From 1 - 2 / 2
  • Categories    

    <p>This dataset provides accurate, high-resolution (30 m) / high-frequency (monthly) / continuous (no gaps due to cloud) actual evapotranspiration (AET) for Australia using the CMRSET algorithm. The CMRSET algorithm uses reflective remotely sensed indices to estimate AET from potential evapotranspiration (PET; calculated using daily gridded meteorological data generated by the Bureau of Meteorology). Blending high-resolution / low-frequency AET estimates (e.g., Landsat and Sentinel-2) with low-resolution / high-frequency AET estimates (e.g., MODIS and VIIRS) results in AET data that are high-resolution / high-frequency / continuous (no gaps due to cloud) and accurate. These are all ideal characteristics when calculating the water balance for a wetland, paddock, river reach, irrigation area, landscape or catchment. </p><p> Accurate AET information is important for irrigation, food security and environmental management. Like many other parts of the world, water availability in Australia is limited and AET is the largest consumptive component of the water balance. In Australia 70% of available water is used for crop and pasture irrigation and better monitoring will support improved water use efficiency in this sector, with any water savings available as environmental flows. Additionally, ground-water dependent ecosystems (GDE) occupy a small area yet are "biodiversity hotspots", and knowing their water needs allows for enhanced management of these critical areas in the landscape. Having high-resolution, frequent and accurate AET estimates for all of Australia means this AET data source can be used to model the water balance for any catchment / groundwater system in Australia. </p><p> Details of the CMRSET algorithm and its independent validation are provided in Guerschman, J.P., McVicar, T.R., Vleeshouwer, J., Van Niel, T.G., Peña-Arancibia, J.L. and Chen, Y. (2022) Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. Journal of Hydrology. 605, 127318, doi:10.1016/j.jhydrol.2021.127318</p> <p> <i>We strongly recommend users to use the TERN CMRSET AET V2.2</i>. Details of the TERN CMRSET AET V2.2 data product generation are provided in McVicar, T.R., Vleeshouwer, J., Van Niel, T.G., Guerschman, J.P., Peña-Arancibia, J.L. and Stenson, M.P. (2022) Generating a multi-decade gap-free high-resolution monthly actual evapotranspiration dataset for Australia using Landsat, MODIS and VIIRS data in the Google Earth Engine platform: Development and use cases. Journal of Hydrology (In Preparation).

  • Categories    

    Dynamically downscaled high-resolution (~10 km spatial resolution) climate change projection data for Queensland. Downscaling was completed using CSIRO Conformal Cubic Atmospheric Model (CCAM) for two RCPs (RCP4.5 and RCP8.5) from 11 CMIP5 global coarse resolution models for period 1980-2099. The Queensland Future Climate Dashboard (www.longpaddock.qld.gov.au/qld-future-climate/ ) provides easy access to climate projection for Queensland. The dashboard allows users to explore, visualize and download the latest high-resolution climate modelling data for specific regions, catchments, disaster areas, local government areas and grid squares. Underlying data is provided via TERN for easy access for each of 11 downscaled models. The Queensland Future Climate Dataset provides high resolution data for over 30 different metrics grouped in six climate themes: (i) Mean Climate; (ii) Heatwaves; (iii) Extreme Temperature Indices; (iv) Extreme Precipitation Indices; (v) Droughts; and (vi) Floods. In addition selected variables at daily and monthly intervals are also available.