Keyword

enhanced vegetation index

122 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 122
  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The site is classified as box woodland, dominated by two main eucalypt species: <em>Eucalyptus microcarpa</em> (grey box) and <em>Eucalyptus leucoxylon</em> (yellow gum). The site has an elevation of 165&nbsp;m. Mean annual precipitation measured by the nearby Bureau of Meteorology site is 558&nbsp;mm. Maximum temperatures range from 12.6&nbsp;°C (in July) to 29.8&nbsp;°C (in January), while minimum temperatures range from 3.2&nbsp;°C (in July) to 14.2&nbsp;°C (in February). Maximum temperatures vary on a seasonal basis by approximately 17.2&nbsp;°C and minimum temperatures by 11.0&nbsp;°C.</br> <br>The instrument mast is 36&nbsp;m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The Cape Tribulation flux station was located in the land that is adjacent to the Daintree National Park which is part of the Wet Tropics World Heritage Area (WTWHA). The site is flanked to the west by coastal ranges rising to more than 1400&nbsp;m and to the east by the Coral Sea. The red clay loam podzolic soils are of metamorphic origin and have good drainage characteristics. The metamorphic rocks grade into granite boulders along Thompson Creek which runs along the northern boundary of the site. The crane site itself is gently sloping but the fetch area makes the site one of very complex terrain. The forest is classed as complex mesophyll vine forest (type 1a) and has an average canopy height of 25m. The dominant canopy trees belong to the <i>Apocynaceae</i>, <i>Arecaceae</i>, <i>Euphorbiaceae</i>, <i>Lauraceae</i>, <i>Meliaceae</i>, <i>Myristicaceae</i> and <i>Myrtaceae</i> families. The forest is continuous for several kilometres around the crane except for an area 300&nbsp;m due east of the crane, which is regrowth forest. Annual average rainfall at the site is around 5180&nbsp;mm and is strongly seasonal, with 66% falling between January and April (wet season). Mean daily temperature ranges from 26.6&nbsp;°C in February to 21.2&nbsp;°C in July. </br> <br> Tropical cyclones are a frequent occurrence in Far North Queensland. These severe tropical storm systems are natural phenomena which play a major role in determining the ecology of Queensland's tropical lowland rainforests. In March 1999 Tropical Cyclone Rona (Category 3) passed over the Cape Tribulation area causing widespread damage (gusts >170&nbsp;km/h). At the site several large trees fell, nearly all of the remaining trees were stripped of leaves and the lianas towers were torn to ground level. </br> <br> The flux station was mounted at the 45&nbsp;m level on the tower of the Australian Canopy Crane external link. The canopy crane is a Liebherr 91 EC, freestanding construction tower crane. The crane is 48.5&nbsp;m tall with a radius of 55&nbsp;m enabling access to 1 hectare of rainforest. Fluxes of heat, water vapour and carbon dioxide were measured using the open-path eddy covariance technique. Supplementary measurements above the canopy included temperature, humidity, rainfall, total solar; these measurements have continued post the flux system decommissioning. Heat flux, soil temperature and water content (time domain reflectometry) were measured in proximity to the flux station; these measurements have continued post the flux system decommissioning. Detailed biometric measurements are made at the crane site and all trees have regular (5 yearly) dbh measurements and canopy mapping carried out. Monitoring bores (3) are located on site. Leaf litter measurements are carried out on a monthly basis.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Tumbarumba flux station is located in Bago State Forest in south eastern New South Wales. It was established in 2000 and is managed by CSIRO Marine and Atmospheric Research. The forest is classified as wet sclerophyll, the dominant species is <em>Eucalyptus delegatensis</em>, and average tree height is 40&nbsp;m. Elevation of the site is 1200&nbsp;m and mean annual precipitation is 1000&nbsp;mm. Bago and Maragle State Forests are adjacent to the south west slopes of southern New South Wales and the 48,400&nbsp;ha of native forest have been managed for wood production for over 100 years. The instrument mast is 70&nbsp;m tall. Fluxes of heat, water vapour and carbon dioxide are measured using the open-path eddy flux technique. Supplementary measurements above the canopy include temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation. Profiles of temperature, humidity and CO<sub>2</sub> are measured at seven levels within the canopy. Soil moisture content is measured using time domain reflectometry. Soil heat fluxes and temperature are also measured. Hyper-spectral radiometric measurements are being used to determine canopy leaf-level properties.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br /> The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330&nbsp;m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445&nbsp;mm with highest rainfall in June and July of 81&nbsp;mm each month. Maximumum and minuimum annual rainfall is 775 and 217&nbsp;mm, respectively. Maximum temperatures range from 31.9&nbsp;°C (in Jan) to 15.4&nbsp;°C (in July), while minimum temperatures range from 5.5&nbsp;°C (in July) to 16.0&nbsp;°C (in Feb).<br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland. Flux tower measurements were carried out from June 2011 to early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). The elevation of the site is approximately 170&nbsp;m asl and mean annual precipitation is 572&nbsp;mm. The tower bordered 2 land use types to the west lightly forested tussock grasslands; to the east crop lands, cycling through fallow periods. The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6&nbsp;m tall with the instrument mast extending a further 1.1&nbsp;m above, totalling a height of 6.7&nbsp;m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the four components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).<br /> <br /> The site is classified as an open woodland savanna. The overstory is co-dominated by tree species <em>Eucalyptus miniata</em> and <em>Eucalyptus tentrodonata</em>, and average tree height is 14-16&nbsp;m. Elevation of the site is close to 64&nbsp;m and mean annual precipitation is 1750&nbsp;mm. Maximum temperatures range from 30.4&nbsp;°C (in July) to 33.2&nbsp;°C (in November), while minimum temperatures range from 19.3&nbsp;°C (in July) to 25.4&nbsp;°C (in November). Therefore, the maximum and minimum range varies from 7&nbsp;°C (wet season) to 11&nbsp;°C (dry season).<br /><br /> The instrument mast is 23&nbsp;m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.<br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br> The Calperum Chowilla site was established in July 2010 and is managed by the University of Adelaide, coordinated by Prof Wayne Meyer and Prof David Chittleborough of the Landscape Futures Program as part of the Environment Institute. This is a former sheep grazing property that has been destocked and is being managed as a conservation area in this type of ecosystem. The landscape is flat with a series of low east–west sand dunes. The dunes are remnants of a previous dry era and are mostly now stabilized by mallee (multi-stemmed Eucalypt trees) and various shrubs. It is a semi-arid environment fringing the River Murray floodplains of the Riverland. <br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The Cape Tribulation flux station was located in the land that is adjacent to the Daintree National Park which is part of the Wet Tropics World Heritage Area (WTWHA). The site is flanked to the west by coastal ranges rising to more than 1400&nbsp;m and to the east by the Coral Sea. The red clay loam podzolic soils are of metamorphic origin and have good drainage characteristics. The metamorphic rocks grade into granite boulders along Thompson Creek which runs along the northern boundary of the site. The crane site itself is gently sloping but the fetch area makes the site one of very complex terrain. The forest is classed as complex mesophyll vine forest (type 1a) and has an average canopy height of 25m. The dominant canopy trees belong to the <i>Apocynaceae</i>, <i>Arecaceae</i>, <i>Euphorbiaceae</i>, <i>Lauraceae</i>, <i>Meliaceae</i>, <i>Myristicaceae</i> and <i>Myrtaceae</i> families. The forest is continuous for several kilometres around the crane except for an area 300&nbsp;m due east of the crane, which is regrowth forest. Annual average rainfall at the site is around 5180&nbsp;mm and is strongly seasonal, with 66% falling between January and April (wet season). Mean daily temperature ranges from 26.6&nbsp;°C in February to 21.2&nbsp;°C in July. </br> <br> Tropical cyclones are a frequent occurrence in Far North Queensland. These severe tropical storm systems are natural phenomena which play a major role in determining the ecology of Queensland's tropical lowland rainforests. In March 1999 Tropical Cyclone Rona (Category 3) passed over the Cape Tribulation area causing widespread damage (gusts >170&nbsp;km/h). At the site several large trees fell, nearly all of the remaining trees were stripped of leaves and the lianas towers were torn to ground level. </br> <br> The flux station was mounted at the 45&nbsp;m level on the tower of the Australian Canopy Crane external link. The canopy crane is a Liebherr 91 EC, freestanding construction tower crane. The crane is 48.5&nbsp;m tall with a radius of 55&nbsp;m enabling access to 1 hectare of rainforest. Fluxes of heat, water vapour and carbon dioxide were measured using the open-path eddy covariance technique. Supplementary measurements above the canopy included temperature, humidity, rainfall, total solar; these measurements have continued post the flux system decommissioning. Heat flux, soil temperature and water content (time domain reflectometry) were measured in proximity to the flux station; these measurements have continued post the flux system decommissioning. Detailed biometric measurements are made at the crane site and all trees have regular (5 yearly) dbh measurements and canopy mapping carried out. Monitoring bores (3) are located on site. Leaf litter measurements are carried out on a monthly basis.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The Yarramundi Irrigated site is an improved, managed pasture on the Western Sydney University Hawkesbury campus. Original woodland vegetation was cleared prior to 1950. A mixture of native and exotic grasses and forbs dominate the site, which is used by cattle in an intensively managed grazing operation. The flux tower was established in October of 2019 and is managed by the Hawkesbury Institute for the Environment, with partial support from TERN and WSU Office of Estate and Commercial (Farm Production Unit).</br> <br>The climate is warm-temperate, with annual rainfall averaging 728&nbsp;mm, mean maximum temperature in January of 30.4&deg;C and mean minimum temperature in July of 3.6&deg;C (BOM station 067105). The elevation of the site is about 20&nbsp;m asl and the topography is flat. The soil is sandy loam in texture, organic carbon content is <1%.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). <br /> <br /> Located in a 5 km<sup>2</sup> block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br /> Tropical savanna in Australia occupies 1.9 million km<sup>2</sup> across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40 % of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />