dead plant
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
<p> The dataset aims at studying associations between mating system parameters and fitness in natural populations of trees. Fifty-eight open-pollinated progeny arrays were collected from trees in three populations. Progeny were planted in a reciprocal transplant trial. Fitness was measured by family establishment rates. We genotyped all trees and their progeny at eight microsatellite loci. Planting site had a strong effect on fitness, but seed provenance and seed provenance × planting site did not. Populations had comparable mating system parameters and were generally outcrossed, experienced low biparental inbreeding and high levels of multiple paternity. As predicted, seed families that had more multiple paternities also had higher fitness, and no fitness-inbreeding correlations were detected. Demonstrating that fitness was most affected by multiple paternities rather than inbreeding, we provide evidence supporting the constrained inbreeding hypothesis; i.e. that multiple paternity may impact on fitness over and above that of inbreeding, particularly for preferentially outcrossing trees at life stages beyond seed development. This dataset could potentially be reused for meta-analysis or review of effects of habitat fragmentation on plants (e.g. pollination, mating system, genetic diversity etc). Please contact owner prior to re-use. </p> <p>This is part of the authors' PhD at the University of Adelaide, supervised by Prof Andrew Lowe, Dr Mike Gardner and Dr Kym Ottewell. Main goals of the project were 1. Examine and quantify the impact of fragmentation and tree density on mating patterns, and how this may vary with pollinators of differing mobility 2. Determine the theoretical expectations and perform empirical tests of mating pattern-fitness relationships in trees 3. Explore the plant genetic resource management implications that arise from the observations in aims 1 and 2 </p>
-
<br>This dataset lists plant species and their abundance identified at rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> <br>Plant occurrences (i.e. a sample of a plant at a particular point and time) are methodically identified at each site as part of the AusPlots Point intercept method. Plant species are identified at each site as part of the AusPlots Vegetation vouchering and Basal Area methods. In addition to site visit date and location, the information provided includes growth form, vegetative height and whether the plant is dead. In-canopy-sky is also recorded if there is no intercept to foliage or branches when viewing the canopy through the densitometer and can be used to calculate species cover or aerial cover. Other recorded information includes dead plants basal area and the number of sampling points. Species identification is updated once confirmed by Herbaria. Plant occurrences data can be aggregated across the site to calculate relative species abundance, green ground cover, species- growth form- and -community-level basal area.<br /> <br>In addition, at least one specimen is taken from each species at the site, assigned a barcode and provided for vouchering and further analyses. See AusPlots Rangelands Vocabularies for a list of parameters collected. </br>
-
<p> TERN Ecosystem Surveillance is a plot-based field monitoring platform that tracks the direction and magnitude of change in Australia’s environments. Information on soils and vegetation is collected according to standardized, widely endorsed and consistent protocols across all plots, and includes the collection of soil and vegetation samples for subsequent analysis.</p> <p>Data collected by TERN is stratified across the entire continent to ensure adequate coverage of major Australian ecosystems, and measures are repeated at least once a decade, with the aim to establish replicate plots throughout the ecosystem types existing within Australia’s Major Vegetation Groups (MVG’s). Additional plots located in key environmental transition zones will be re-measured every five years.</p> <p>TERN users include researchers, land managers and policy-makers who require access to terrestrial ecosystem attributes collected over time from continental scale to field sites at hundreds of representative locations. TERN provides model-ready data that enables users to detect and interpret changes in ecosystems. In addition, TERN curates The TERN Australia Soil and Herbarium Collection with over 150,000 vegetation and soil samples (and associated contextual environmental data) freely available to loan on request.</p> <p>TERN’s world-class surveillance monitoring infrastructure will support long-term ecological inventory, environmental monitoring, environmental prediction, reporting and assessment, and underpin decisions about our greatest environmental challenges.</p> <p>Occurrence records can be accessed through the <a href="https://www.ala.org.au/">Atlas of Living Australia</a>.</p>