From 1 - 4 / 4
  • Categories    

    The acquisition of sunphotometer measurements are critical to capture vital data on atmospheric properties during airborne hyperspectral imaging campaigns as well as for measurements coinciding with the overpass of satellite sensors. The atmospheric properties measured are used in atmospheric correction of the remotely sensed image data. This data is primarily for input into atmospheric correction systems. It may also prove of use in validation of aerosol products such as MOD04 and the reflectance change method developed as part of CRC-SI project 4.1 which may be integrated into the Auscover 19 band reflectance product processing. It can also be used to check methods that produce water vapour directly from the data (SODA). The MicroTops instruments referred to here capture solar radiance data in 5 wavelengths which are used to extract information on aerosol optical thickness and water vapour content. These two key parameters of interest are used as inputs for the atmospheric correction of remotely sensed image data.

  • Categories    

    <br>The Brigalow Catchment Study (BCS) in the brigalow (<em>Acacia harpophylla</em>) bioregion of central Queensland, commenced in 1965 with a pre-clearing calibration phase of 17 years to define the hydrology of 3 adjoining catchments (12-17&nbsp;ha). Following clearing of 2 catchments in 1982, 3 land uses, brigalow forest, cropping, and grazed pasture, were established and monitored for water balance, resource condition and productivity. This trial has provided data and scientific understanding on the interaction of climate, soils, water, land use and management for resource condition across the three major land uses. Soil samples from the trial site have been used in calibration of the Roth C model for use in estimating Australia’s national greenhouse gas inventory.</br>

  • Categories    

    The Australian cosmic-ray soil moisture monitoring network was first established in 2010 to provide Australian and global researchers with spatially distributed intermediate scale soil moisture observations. A cosmic-ray sensor (CRS) provides continuous estimates of soil moisture over an area of approximately 30 hectares by measuring naturally generated fast neutrons (energy 10–1000 eV) that are produced by cosmic rays passing through the Earth’s atmosphere. The neutron intensity above the land surface is inversely correlated with soil moisture as it responds to the hydrogen contained in the soil and to a lesser degree to plant and soil carbon compounds. The cosmic-ray technique is also passive, non-contact, and is largely insensitive to bulk density, surface roughness, the physical state of water, and soil texture. The scale of CRS measurements fills the void between point scale sensor measurements and large scale satellite observations. The depth of measurements varies with the moisture content of the soil but is typically between 10-30 cm. The depth of observations is reported as ‘effective depth’. <br> The CosmOz network is expanding as new sensors are added over time. The initial network was funded by CSIRO Land and Water but more recently TERN has funded work to maintain the network add new sensors and deliver data more efficiently. The standard CRS installation includes; a cosmic-ray neutron tube, a rain gauge (2m high), temperature and humidity sensors, and an atmospheric pressure sensor. Measures of all parameters are reported at an hourly interval. Each CRS requires an in-field calibration across the footprint of measurements to convert neutron counts to soil moisture content. The calibration includes collection of soil samples for bulk density, lattice water content and soil organic carbon.<br> The Australia CosmOz network consists of <a href="https://cosmoz.csiro.au/sites">19 stations</a>. The extent of the network and available data can be seen at the CosmOz network web page: <a href="https://cosmoz.csiro.au/">https://cosmoz.csiro.au</a>. The data is also accessible from the <a href="https://landscapes-cosmoz-api.tern.org.au/rest/doc">TERN Cosmoz REST API</a>.<br> The calibration and correction procedures used by the network are described by <a href="https://doi.org/10.1002/2013WR015138">Hawdon et al. 2014 </a>.

  • Categories    

    Schools Weather and Air Quality (SWAQ) is a citizen science project funded by the Department of Industry, Innovation and Science as part of its Inspiring Australia - Citizen Engagement Program. SWAQ is equipping public schools across Sydney with research-grade meteorology and air quality sensors, enabling students to collect and analyse research quality data through curriculum-aligned classroom activities. The network includes twelve automatic weather stations and seven automatic air quality stations, stretched from -33.5995° to -34.0421° latitude and from 150.6913° to 151.2708° longitude. The average spacing is 10.2 km and the average installation height is 2.5 m above ground level. Optimum site allocation was determined by undertaking a multi-criteria weighted overlay analysis to ensure data representativeness and quality. Six meteorological parameters (dry-bulb temperature, relative humidity, barometric pressure, rain, wind speed, and wind direction) and six air pollutants (SO2, NO2, CO, O3, PM2.5, and PM10) are recorded. Observations and metadata are available from September 2019 for WXT536 + AQT420 stations and from October 2019 for WXT536 stations (refer to Table 1 of the Dataset Guide), thus encompassing the Black Summer bushfire and the COVID-19 lockdown period. Data routinely undergo quality control, quality assurance and publication.