Transpiration
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
-
Evaporation, Transpiration, and Evapotranspiration Products for Australia based on the Maximum Entropy Production model (MEP). This record is an introduction of a method into the MEP algorithm of estimating the required model parameters over the entire continent of Australia through the use of pedotransfer function, soil properties and remotely sensed soil moisture data. The algorithm calculates the evaporation and transpiration over Australia on daily timescales at the 0.05 degree (5 km) resolution for 2003 – 2013. The MEP evapotranspiration (ET) estimates were validated using observed ET data from 20 Eddy Covariance (EC) flux towers across 8 land cover types in Australia and compared the MEP-ET at the EC flux towers with two other ET products over Australia; MOD16 and AWRA-L products. The MEP model outperformed the MOD16 and AWRA-L across the 20 EC flux sites, with average root mean square errors (RMSE), 8.21, 9.87 and 9.22 mm/8 days respectively. The average mean absolute error (MAE) for the MEP, MOD16 and AWRA-L were 6.21, 7.29 and 6.52 mm/8 days, the average correlations were 0.64, 0.57 and 0.61, respectively. The percentage bias of the MEP ET was within 20% of the observed ET at 12 of the 20 EC flux sites while the MOD16 and AWRA-L ET were within 20% of the observed ET at 4 and 10 sites respectively. The analysis showed that evaporation and transpiration contribute 38% and 62%, respectively, to the total ET across the study period which includes a significant part of the “millennium drought” period (2003 – 2009) in Australia. File naming conventions: E – Evaporation T – Transpiration ET – Evapotranspiration For the 8 day ET, Daily T and ET, the suffix nnn indicates day of year, for example: 001 for January 1, 145 for May 25 (leap year) or 26, etc. While for the daily E, the suffix is in the format mmdd (month,day) for example 0101 for January 1, 0525 for May 25.