Seasonal
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/24070. Two fractional cover decile products, green cover and total cover, are currently produced from the historical timeseries of seasonal fractional cover images. These products compare, at the per-pixel level, the level of cover for the specific season of interest against the long term cover for that same season. For each pixel, all cover values for the relevant seasons within a baseline period (1988 to 2013) are classified into deciles. The cover value for the pixel in the season of interest is then classified according to the decile in which it falls.
-
<p> Digital Cover Photography (DCP) upward-looking images are collected at least twice per year to capture vegetation cover at Calperum SuperSite. These images can be used to estimate Leaf area index (LAI), Crown Cover or Foliage Projective Cover (FPC). The images are captured at the times of estimated maximum and minimum LAI.</p> <p> The Calperum Mallee SuperSite was established in 2011 and is located on Calperum Station with research plots located in mallee woodland (burnt in 2014), Callitris woodland and a river floodplain (recovering from extensive grazing), consisting of black box, river red gum and lignum. The core 1 ha plot is located in mallee woodland. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/calperum-mallee-supersite/ .</p> <p> Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed under and overstorey cameras, panoramic landscape and ancillary images of fauna and flora. </p>
-
<p>Digital Hemispherical Photography (DHP) upward-looking images are collected up to twice per year to capture vegetation and crown cover at Wombat Stringybark Eucalypt SuperSite. These images are used to estimate Leaf area index (LAI). The images are captured at the times of estimated maximum and minimum LAI. </p><p> The site was established in 2010 in the Wombat State Forest in Central Victoria. The site is dry eucalypt forest with main species <em>Eucalyptus obliqua</em>, <em>Eucalyptus radiata</em> and <em>Euclayptus rubida</em>. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/wombat-stringybark-eucalypt-supersite/. </p><p> Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed under and overstorey cameras and ancilliary images of fauna and flora. </p>
-
<p>Digital Hemispherical Photography (DHP) upward-looking images are collected twice per year to capture vegetation and crown cover at the Warra Tall Eucalypt SuperSite. These images are used to estimate Leaf area index (LAI). The images are captured at the times of estimated maximum and minimum LAI. </p> <p> The Warra Tall Eucalypt SuperSite was established in 2012 and is located in a stand of tall, mixed-aged <em>Eucalyptus obliqua</em> forest (1.5, 77 and >250 years-old) with a rainforest / wet sclerophyll understorey and a dense man-fern (<em>Dicksonia antarctica</em>) ground-layer. The site experienced a fire in January 2019, which consumed the ground layer and killed a high proportion of the understorey trees but stimulated dense seedling regeneration. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/warra-tall-eucalypt-supersite/. </p><p> Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed under and overstorey cameras, panoramic landscape and ancillary images of fauna and flora. </p>
-
The seasonal dynamic reference cover method product compares the current ground cover level of each pixel to a reference pixel based on the historical timeseries and is available for Queensland from 1987 to present. It is created using a modified version of the dynamic reference cover method developed by <a href="https://doi.org/10.1016/j.rse.2012.02.021">Bastin et al (2012) </a>. This approach calculates a minimum ground cover image over all years to identify locations of most persistent ground cover in years with the lowest rainfall, then uses a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. The output is a difference image between the cover amount of a pixel's reference pixels and the actual cover at that pixel for the season being analysed. Negative values indicate pixels which have less cover than the reference pixels.<br> The main differences between this method and the original method are that this method uses seasonal fractional ground cover rather than the preceding ground cover index (GCI) and this method excludes cleared areas and certain landforms (undulating slopes), which are considered unsuitable for use as reference pixels.<br> This product is based upon the JRSRP Fractional Cover 3.0 algorithm.
-
An estimate of persistent green cover per season across Australia from 1989 to the present season, minus 2 years. This is intended to estimate the portion of vegetation that does not completely senesce within a year, which primarily consists of woody vegetation (trees and shrubs), although there are exceptions where non-woody cover remains green all year round. It is derived by fitting a multi-iteration minimum weighted smoothing spline through the green fraction of the seasonal fractional cover (dp1) time series. A single band image is produced: persistent green vegetation cover (in percent). The no data value is 255.
-
Two fractional cover decile products, green cover and total cover, are currently produced from the historical timeseries of seasonal fractional cover images across Australia, available for each 3-month calendar season. These products compare, at the per-pixel level, the level of cover for the specific season of interest against the long term cover for that same season. For each pixel, all cover values for the relevant seasons within a baseline period (1990 - 2020) are classified into deciles. The cover value for the pixel in the season of interest is then classified according to the decile in which it falls.<br> This product is based upon the JRSRP Fractional Cover 3.0 algorithm.
-
The data set contains distance measures of primary (wind-borne) and secondary (on ground) seed dispersal during spring, summer and autumn, using empirical observations and detailed measurement of wind characteristics. Seeds were collected from populations of <i>Callitris verrucosa</i> within the reserve and was placed parallel to, and 100 m from the burn edge within the burnt site. For the empirical observation of seed dispersal we chose six release locations, three locations in each of the two sites, about 6 km apart that had both recently undergone a planned burn, one in spring 2009 and the other in autumn 2011. Within those two sites the three release locations were positioned 800 m apart from each other along a transect that was placed parallel to, and 100 m from the burn edge within the burnt site. To assess primary (wind-borne) seed dispersal, 20 randomly chosen seeds were released from each of three different heights (1 m, 2 m and 3 m) at each of the six sites, giving a total of 360 seeds released per season. Seeds were only released within a horizontal wind speed range of 8 - 25 km/h. At lower wind speeds seeds would not take-off and at higher wind speeds seeds could not be relocated. This data set could be reused in a similar study carried out for the same species in a different location. <br> To understand the effect of standing vegetation on the secondary (on-ground) seed dispersal, we established groups of 10 seeds on the ground within 10 m of each of the six previous release locations. Seed were left for 4 days before relocated and distances to the starting point were measured. This was repeated during all 3 seasons. Out of the 180 seeds released,161 (89%) seeds could be relocated. <br> Wind measurements were taken on a sand dune crest in the site that was burned during autumn 2011 using an ultrasonic anemometer (Model WindMaster (Part 1590-PK-020), Gill Instruments Ltd, Lymington, UK). Measurements continued for two weeks in spring, summer and autumn. The anemometer measured horizontal wind speed, horizontal wind direction, and vertical wind speed every 0.1 s, producing a dynamic, three dimensional wind speed vector. Measurements were taken at 2 m height. The data can be used for studies dealing with wind movements in mallee during Spring, Summer and Autumn as well as comparative seed dispersal studies using the same or other wind dispersed plant species.
-
<ul><li>1. Restoration of degraded landscapes has become increasingly important for conservation of species and their habitats owing to habitat destruction and rapid environmental change. An increasing focus for restoration activity are old-fields as agricultural land abandonment has expanded in the developed world. Studies examining outcomes of ecological restoration predominantly focus on vegetation structure and plant diversity, and sometimes vertebrate fauna. Fewer studies have systematically investigated effects of restoration efforts on soil chemical and biophysical condition or ground-dwelling invertebrates and there is limited synthesis of these data. </li> <li>2. This dataset comprised data for a global meta-analysis of published studies to assess the effects on soil properties and invertebrates of restoring land that was previously used for agriculture. Studies were included if the site had been either cropped or grazed, restoration was either active (planting) or passive (abandonment, fencing) and if adequate data on soil chemical or physical properties or invertebrate assemblages were reported for restored, control (cropped/grazed) or reference sites.</li> <li>3. The dataset includes 42 studies, published between 1994 and 2019 that met the inclusion criteria, covering 16 countries across all continents. More studies assessed passive restoration approaches than active planting, and native species were more commonly planted than exotic species.</li></ul>
-
<p>Digital Hemispherical Photography (DHP) images are collected twice per year to capture vegetation and crown cover at Robson Creek Rainforest SuperSite. Images are taken at the end of the wet season and the end of the dry season and the dates will differ each year. These images are used to estimate maximum (wet season) and minimum (dry season) Leaf area index (LAI) for the rainforest biome. </p><p> The 25 hectare site was established in 2009 and lies on the Atherton Tablelands in the wet tropical rainforests of Australia at 680-740 m elevation. It is situated in Danbulla National Park within the Wet Tropics World Heritage Area. The forest is classified as Regional Ecosystem (RE) 7.3.36a, complex mesophyll vine forest (Queensland Government 2006). The climate is seasonal with approximately 60% of rain falling between January and March and the landform is moderately inclined with a low relief. There are 208 species in the site, and average canopy height is 28 m, ranging from 23 to 44 m. All stems ≥ 10 cm diameter are measured, tagged and mapped. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/robson-creek-rainforest-supersite/. </p><p> Other bioimages collected at the site include photopoints, phenocam images taken from fixed under and overstorey cameras and ancillary images of fauna and flora. </p>