Keyword

Seasonal

25 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 25
  • Categories    

    An estimate of persistent green cover per season across Australia from 1989 to the present season, minus 2 years. This is intended to estimate the portion of vegetation that does not completely senesce within a year, which primarily consists of woody vegetation (trees and shrubs), although there are exceptions where non-woody cover remains green all year round. It is derived by fitting a multi-iteration minimum weighted smoothing spline through the green fraction of the seasonal fractional cover (dp1) time series. A single band image is produced: persistent green vegetation cover (in percent). The no data value is 255.

  • Categories    

    The seasonal dynamic reference cover method product compares the current ground cover level of each pixel to a reference pixel based on the historical timeseries and is available for Queensland from 1987 to present. It is created using a modified version of the dynamic reference cover method developed by <a href="https://doi.org/10.1016/j.rse.2012.02.021">Bastin et al (2012) </a>. This approach calculates a minimum ground cover image over all years to identify locations of most persistent ground cover in years with the lowest rainfall, then uses a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. The output is a difference image between the cover amount of a pixel's reference pixels and the actual cover at that pixel for the season being analysed. Negative values indicate pixels which have less cover than the reference pixels.<br> The main differences between this method and the original method are that this method uses seasonal fractional ground cover rather than the preceding ground cover index (GCI) and this method excludes cleared areas and certain landforms (undulating slopes), which are considered unsuitable for use as reference pixels.<br> This product is based upon the JRSRP Fractional Cover 3.0 algorithm.

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/TERN/169dbb12-846f-4536-9dab-e31378d16b41. Two fractional cover decile products, green cover and total cover, are currently produced from the historical timeseries of seasonal fractional cover images. These products compare, at the per-pixel level, the level of cover for the specific season of interest against the long term cover for that same season. For each pixel, all cover values for the relevant seasons within a baseline period (1988 to 2013) are classified into deciles. The cover value for the pixel in the season of interest is then classified according to the decile in which it falls.

  • Categories    

    <p>Digital Hemispherical Photography (DHP) upward-looking images are collected twice per year to capture vegetation and crown cover at the Warra Tall Eucalypt SuperSite. These images are used to estimate Leaf area index (LAI). The images are captured at the times of estimated maximum and minimum LAI. </p> <p> The Warra Tall Eucalypt SuperSite was established in 2012 and is located in a stand of tall, mixed-aged <em>Eucalyptus obliqua</em> forest (1.5, 77 and &gt;250 years-old) with a rainforest / wet sclerophyll understorey and a dense man-fern (<em>Dicksonia antarctica</em>) ground-layer. The site experienced a fire in January 2019, which consumed the ground layer and killed a high proportion of the understorey trees but stimulated dense seedling regeneration. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/warra-tall-eucalypt-supersite/. </p><p> Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed under and overstorey cameras, panoramic landscape and ancillary images of fauna and flora. </p>

  • Categories    

    Two fractional cover decile products, green cover and total cover, are currently produced from the historical timeseries of seasonal fractional cover images across Australia, available for each 3-month calendar season. These products compare, at the per-pixel level, the level of cover for the specific season of interest against the long term cover for that same season. For each pixel, all cover values for the relevant seasons within a baseline period (1990 - 2020) are classified into deciles. The cover value for the pixel in the season of interest is then classified according to the decile in which it falls.<br> This product is based upon the JRSRP Fractional Cover 3.0 algorithm.

  • Categories    

    <p>Digital Hemispherical Photography (DHP) upward-looking images are collected up to twice per year to capture vegetation and crown cover at Wombat Stringybark Eucalypt SuperSite. These images are used to estimate Leaf area index (LAI). The images are captured at the times of estimated maximum and minimum LAI. </p><p> The site was established in 2010 in the Wombat State Forest in Central Victoria. The site is dry eucalypt forest with main species <em>Eucalyptus obliqua</em>, <em>Eucalyptus radiata</em> and <em>Euclayptus rubida</em>. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/wombat-stringybark-eucalypt-supersite/. </p><p> Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed under and overstorey cameras and ancilliary images of fauna and flora. </p>

  • Categories    

    <p> Digital Cover Photography (DCP) upward-looking images are collected at least twice per year to capture vegetation cover at Calperum SuperSite. These images can be used to estimate Leaf area index (LAI), Crown Cover or Foliage Projective Cover (FPC). The images are captured at the times of estimated maximum and minimum LAI.</p> <p> The Calperum Mallee SuperSite was established in 2011 and is located on Calperum Station with research plots located in mallee woodland (burnt in 2014), Callitris woodland and a river floodplain (recovering from extensive grazing), consisting of black box, river red gum and lignum. The core 1 ha plot is located in mallee woodland. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/calperum-mallee-supersite/ .</p> <p> Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed under and overstorey cameras, panoramic landscape and ancillary images of fauna and flora. </p>

  • Categories    

    <ul><li>1. Restoration of degraded landscapes has become increasingly important for conservation of species and their habitats owing to habitat destruction and rapid environmental change. An increasing focus for restoration activity are old-fields as agricultural land abandonment has expanded in the developed world. Studies examining outcomes of ecological restoration predominantly focus on vegetation structure and plant diversity, and sometimes vertebrate fauna. Fewer studies have systematically investigated effects of restoration efforts on soil chemical and biophysical condition or ground-dwelling invertebrates and there is limited synthesis of these data. </li> <li>2. This dataset comprised data for a global meta-analysis of published studies to assess the effects on soil properties and invertebrates of restoring land that was previously used for agriculture. Studies were included if the site had been either cropped or grazed, restoration was either active (planting) or passive (abandonment, fencing) and if adequate data on soil chemical or physical properties or invertebrate assemblages were reported for restored, control (cropped/grazed) or reference sites.</li> <li>3. The dataset includes 42 studies, published between 1994 and 2019 that met the inclusion criteria, covering 16 countries across all continents. More studies assessed passive restoration approaches than active planting, and native species were more commonly planted than exotic species.</li></ul>

  • Categories    

    <p>Digital Cover Photography (DCP) upward-looking images are collected up to twice per year to capture vegetation cover at Tumbarumba Wet Eucalypt SuperSite. These images can be used to estimate Leaf area index (LAI), Crown Cover or Foliage Projective Cover (FPC). </p><p> The Tumbarumba Flux site was established in 2000 and started measuring in 2001. The 1 hectare (ha) SuperSite plot was established in 2015. Preliminary images have been captured since 2000 using various sampling strategies and protocols. Since 2015 the 1 ha Supersite has had a consistent DCP protocol implemented twice per year. The overstorey is dominated by <em>Eucalyptus delegatensis</em> and <em>Eucalyptus dalrympleana</em>. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/tumbarumba-wet-eucalypt-supersite/ .</p><p> Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed under and overstorey cameras, and ancillary images of fauna and flora. </p>

  • Categories    

    This dataset consists of counts for multiple plant species obtained from the Ethabuka Station and Carlo Reserve in the Simpson Desert, Australia, from 2004-2013 by the Desert Ecology Research Group (DERG) in conjunction with LTERN. It also consists rainfall data obtained from 2004-2012. These datasets were used to perform a Dynamic Factor Analyses for the manuscript, "Life form explains consistent temporal trends across species: the application of dynamic factor analysis". For more information see: DERG; https://www.desertecology.edu.au.