SOIL MOISTURE/WATER CONTENT
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
The Mallee Plot Network Soil Moisture (Probe and Location) Data Package contains soil moisture data obtained from monitoring tubes for soil moisture probes which were installed at intervals along two transects extending across the catenary sequence from swale to swale across a dune crest in May 2011. The Mallee Plot Network research plots commenced in 1996 and were revisited annually for 3 years and then on a decadal basis. A synopsis of related data packages which have been collected as part of the Mallee Plot Network’s full program is provided at http://www.ltern.org.au/index.php/ltern-plot-networks/mallee
-
The Mallee Plot Network Soil Moisture (Probe and Location) Data Package contains soil moisture data obtained from monitoring tubes for soil moisture, which were installed at intervals along two transects extending across the catenary sequence from swale to swale across a dune crest in May 2011. Between 1996 and 2011, 53 experimental sites were established on dune crests and upper slopes, of which 29 are located in Tarawi Nature Reserve, 16 are in Scotia Sanctuary and 8 are in Danggali Conservation Park. After initial censuses in three consecutive years (before and after prescribed fire) or two consecutive years (after wildfire), sites are revisited approximately every five years. A synopsis of related data packages, which have been collected as part of the Mallee Plot Network’s full program is provided at http://www.ltern.org.au/index.php/ltern-plot-networks/mallee
-
The Mallee Plot Network Soil Moisture (Probe and Location) Data Package contains soil moisture data obtained from monitoring tubes for soil moisture probes which were installed at intervals along two transects extending across the catenary sequence from swale to swale across a dune crest in May 2011. The Mallee Plot Network research plots commenced in 1996 and were revisited annually for 3 years and then on a decadal basis. A synopsis of related data packages which have been collected as part of the Mallee Plot Network’s full program is provided at http://www.ltern.org.au/index.php/ltern-plot-networks/mallee
-
This dataset includes volumetric soil water content measured across soil pits in the lowland rainforest of Cape Tribulation. Data were acquired using time-domain reflectometry (TDR) probes recording at soil surface (10 cm) and at depths (50, 100 and 150 cm) at 4 control points - PB1 and PB8 are in the SW quadrant of the crane plot, PB2 and PB5 are in the NW quadrant of the crane plot.
-
Vadose zone soil moisture was collected at the Avon River Critical Zone Observatory (CZO). The measurements were taken at four different depths: 0.6, 1.2, 1.8, 2.4 metres.
-
Samford Peri-Urban Site, Ecosystem Water Use, Influence of Vegetation Type and Topography, 2011-2014
The data set contains information on the soil water content at various depths in the Samford Ecological Research Facility (SERF), Samford Peri-Urban Site. Information on soil water content is provided from two sensors, i.e., 1) Sentek Solo, for high frequency sampling and 2) Sentek Diviner, for coarser resolution sampling.
-
The Soil Moisture Integration and Prediction System (SMIPS) produces national extent daily estimates of volumetric soil moisture at a resolution of approximately 1km or 0.01 decimal degrees. SMIPS also generates an index of between 0-1 which approximates how full the 90cm metre soil moisture store is at a particular location and time. The SMIPS model itself consists of two linked soil moisture stores, a shallow quick responding 10cm upper store and a deeper, slower responding 80cm store. SMIPS is parameterised using physical properties from the <a href ='https://www.clw.csiro.au/aclep/soilandlandscapegrid/'>Soil and Landscape Grid of Australia </a>and takes a data model fusion approach for model forcing. Version 1.0 of the SMIPS model uses precipitation and potential evapotranspiration data from the Bureau of Meteorology’s <a href="http://www.bom.gov.au/water/landscape/assets/static/publications/AWRALv6_Model_Description_Report.pdf">AWRA Model</a>. In addition to version 1.0 of the model, an experimental version of the model is available for user testing. This version of the model uses precipitation data supplied by an experimental CSIRO daily rainfall surface generated using spatial data from the NASA Global Precipitation Mission as a base and enhanced using rainfall observations from the Bureau of Meteorology (BoM) rainfall gauge network, and various landscape covariates, processed using a machine learning approach. <br> To help increase model accuracy, the internal SMIPS model states are adjusted or ‘bumped’ by daily observational data from the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) satellite mission.
-
<br>The Brigalow Catchment Study (BCS) in the brigalow (<em>Acacia harpophylla</em>) bioregion of central Queensland, commenced in 1965 with a pre-clearing calibration phase of 17 years to define the hydrology of 3 adjoining catchments (12-17 ha). Following clearing of 2 catchments in 1982, 3 land uses, brigalow forest, cropping, and grazed pasture, were established and monitored for water balance, resource condition and productivity. This trial has provided data and scientific understanding on the interaction of climate, soils, water, land use and management for resource condition across the three major land uses. Soil samples from the trial site have been used in calibration of the Roth C model for use in estimating Australia’s national greenhouse gas inventory.</br>
-
The far north Queensland microclimate (FNQ-microclim) is an ongoing long-term microclimate monitoring project from across five tropical rainforest sites (Daintree Rainforest SuperSite, Cape Tribulation; Daintree Rainforest SuperSite, Cow Bay; Rex Range; Mt. Lewis National Park; and Mt. Bellenden Ker), located within an elevation range of 40 - 1550 m a.s.l. Microclimate parameters include: a) air temperature (about 15 cm above ground), b) near surface temperature at the interface between soil and air (less than 1 cm above ground), c) top soil temperature (about 8 cm below ground), and d) top soil moisture (up to 10 cm below ground). Data are recorded every 15 minutes using the TMS-4 sensors (Temperature Moisture Sensor, T.M.O.S.T s.r.o, Prague, Czech Republic).
-
The Australian cosmic-ray soil moisture monitoring network was first established in 2010 to provide Australian and global researchers with spatially distributed intermediate scale soil moisture observations. A cosmic-ray sensor (CRS) provides continuous estimates of soil moisture over an area of approximately 30 hectares by measuring naturally generated fast neutrons (energy 10–1000 eV) that are produced by cosmic rays passing through the Earth’s atmosphere. The neutron intensity above the land surface is inversely correlated with soil moisture as it responds to the hydrogen contained in the soil and to a lesser degree to plant and soil carbon compounds. The cosmic-ray technique is also passive, non-contact, and is largely insensitive to bulk density, surface roughness, the physical state of water, and soil texture. The scale of CRS measurements fills the void between point scale sensor measurements and large scale satellite observations. The depth of measurements varies with the moisture content of the soil but is typically between 10-30 cm. The depth of observations is reported as ‘effective depth’. <br> The CosmOz network is expanding as new sensors are added over time. The initial network was funded by CSIRO Land and Water but more recently TERN has funded work to maintain the network add new sensors and deliver data more efficiently. The standard CRS installation includes; a cosmic-ray neutron tube, a rain gauge (2m high), temperature and humidity sensors, and an atmospheric pressure sensor. Measures of all parameters are reported at an hourly interval. Each CRS requires an in-field calibration across the footprint of measurements to convert neutron counts to soil moisture content. The calibration includes collection of soil samples for bulk density, lattice water content and soil organic carbon.<br> The Australia CosmOz network consists of <a href="https://cosmoz.csiro.au/sites">19 stations</a>. The extent of the network and available data can be seen at the CosmOz network web page: <a href="https://cosmoz.csiro.au/">https://cosmoz.csiro.au</a>. The data is also accessible from the <a href="https://landscapes-cosmoz-api.tern.org.au/rest/doc">TERN Cosmoz REST API</a>.<br> The calibration and correction procedures used by the network are described by <a href="https://doi.org/10.1002/2013WR015138">Hawdon et al. 2014 </a>.