From 1 - 8 / 8
  • Categories    

    This dataset contains UAV RGB imagery collected as part of a field trial to test the Uncrewed Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX (5-band multispectral sensor). P1 imagery were georeferenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. The flight took place between 14:00 and 14:08 at a height of 80m with a flying speed set to 5 m/s. Forward and side overlaps of photographs were set to 80%. <br><br> Agisoft Metashape was used to generate this RGB orthomosaic (resolution 1 cm). This cloud optimised GeoTIFF was created using rio command line interface. The coordinate reference system of the orthomosaic is EPSG 7855 - GDA2020 MGA Zone 55.

  • Categories    

    This dataset contains UAV multispectral imagery collected as part of a field trial to test the Unmanned Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX (5-band multispectral sensor). P1 imagery were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. P1 Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. The flights took place between 14:58 and 03:08 at a height of 80m with a flying speed set to 5 m/s. Forward and side overlaps of photographs were set to 80%. <br><br> Micasense multispectral sensor positions were interpolated using P1, following which a standard workflow was followed in Agisoft Metashape to generate this orthomosaic (resolution 5 cm). Reflectance calibration was performed using captures of the MicaSense Calibration Panel taken before the flight. The orthomosaic raster has the relative reflectance (no unit) for the 5 bands (B, G, R, RedEdge, NIR). This cloud optimised (COG) GeoTIFF was created using rio command line interface. The coordinate reference system of the COG is EPSG 7855 - GDA2020 MGA Zone 55. <br><br> In the raw data RedEdge-MX image file suffixes correspond to bands like so - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge. However, in the processed Orthomoasic GeoTIFF, the bands are ordered in the wavelength order (Blue, Green, Red, Red Edge, NIR).

  • Categories    

    This dataset contains UAV RGB imagery collected as part of a field trial to test the Uncrewed Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX Dual (10-band multispectral sensor). P1 imagery were georeferenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. Flight conducted between 10:26 am and 10:47 am AEDT at flying height 80 m, forward and side overlap set to 80%. <br><br> RGB orthomosaic (resolution: 1 cm. CRS: EPSG 7855 - GDA2020 MGA Zone 55) generated using Agisoft Metashape Professional, and a cloud optimised GeoTIFF was created using rio command line interface.

  • Categories    

    This dataset contains UAV multispectral imagery collected as part of a field trial to test the Uncrewed Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX Dual (10-band multispectral sensor). P1 imagery were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. P1 Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. Flight conducted between 10:26 am and 10:47 am AEDT at flying height 80 m, forward and side overlaps for Zenmuse P1 set to 80%. MicaSense RedEdge-MX Dual triggered using timer mode (every second). <br><br> Micasense multispectral sensor positions were interpolated using P1, following which a standard workflow was followed in Agisoft Metashape to generate this orthomosaic (resolution 5 cm). Reflectance calibration was performed using captures of the MicaSense Calibration Panel taken before the flight. The orthomosaic raster has the relative reflectance (no unit) for the 10 bands (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR). The cloud optimised (COG) GeoTIFF was created using rio command line interface. The coordinate reference system of the COG is EPSG 7855 - GDA2020 MGA Zone 55. <br><br> In the raw data RedEdge-MX image file suffixes correspond to bands like so - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge, 6: Coastal Blue, 7: Green 531, 8: Red 650, 9: RedEdge 705, 10: RedEdge 740. However, in the processed Orthomoasic GeoTIFF, the bands 1-10 are ordered as per the Central Wavelength (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR).

  • Categories    

    The Soil Moisture Integration and Prediction System (SMIPS) produces national extent daily estimates of volumetric soil moisture at a resolution of approximately 1km or 0.01 decimal degrees. SMIPS also generates an index of between 0-1 which approximates how full the 90cm metre soil moisture store is at a particular location and time. The SMIPS model itself consists of two linked soil moisture stores, a shallow quick responding 10cm upper store and a deeper, slower responding 80cm store. SMIPS is parameterised using physical properties from the <a href ='https://www.clw.csiro.au/aclep/soilandlandscapegrid/'>Soil and Landscape Grid of Australia </a>and takes a data model fusion approach for model forcing. Version 1.0 of the SMIPS model uses precipitation and potential evapotranspiration data from the Bureau of Meteorology’s <a href="http://www.bom.gov.au/water/landscape/assets/static/publications/AWRALv6_Model_Description_Report.pdf">AWRA Model</a>. In addition to version 1.0 of the model, an experimental version of the model is available for user testing. This version of the model uses precipitation data supplied by an experimental CSIRO daily rainfall surface generated using spatial data from the NASA Global Precipitation Mission as a base and enhanced using rainfall observations from the Bureau of Meteorology (BoM) rainfall gauge network, and various landscape covariates, processed using a machine learning approach. <br> To help increase model accuracy, the internal SMIPS model states are adjusted or ‘bumped’ by daily observational data from the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) satellite mission.

  • Categories    

    Vegetation Fractional Cover represents the exposed proportion of Photosynthetic Vegetation (PV), Non-Photosynthetic Vegetation (NPV) and Bare Soil (BS) within each pixel. The sum of the three fractions is 100% (+/- 3%) and shown in Red/Green/Blue colors. In forested canopies the photosynthetic or non-photosynthetic portions of trees may obscure those of the grass layer and/or bare soil. This product is derived from the MODIS Nadir BRDF-Adjusted Reflectance product (MCD43A4) collection 6 and has 500 meters spatial resolution. A suite of derivative products are also produced including monthly fractional cover, total vegetation cover (PV+NPV), and anomaly of total cover against the time series. Monthly: The monthly product is aggregated from the 8-day composites using the medoid method. Anomaly: represents the difference between total vegetation cover (PV+NPV) in a given month and the mean total vegetation cover for that month in all years available, expressed in units of cover. For example, if the mean vegetation cover in January (2001-current year) was 40% and the vegetation cover for the pixel in January 2018 was 30%, the anomaly for the pixel in Jan 2018 would be -10%. Decile: represents the ranking (in ten value intervals) for the total vegetation cover in a given month in relation to the vegetation cover in that month for all years in the time-series. MODIS fractional cover has been validated for Australia.

  • Categories    

    Destructive sampling of 47 <em>Eucalyptus obliqua</em> trees was carried out in the Warra Tall Eucalypt site to determine a range of biomass measures that can be used to inform allometric equations.

  • Categories    

    <p>This dataset provides accurate, high-resolution (30 m) / high-frequency (monthly) / continuous (no gaps due to cloud) actual evapotranspiration (AET) for Australia using the CMRSET algorithm. The CMRSET algorithm uses reflective remotely sensed indices to estimate AET from potential evapotranspiration (PET; calculated using daily gridded meteorological data generated by the Bureau of Meteorology). Blending high-resolution / low-frequency AET estimates (e.g., Landsat and Sentinel-2) with low-resolution / high-frequency AET estimates (e.g., MODIS and VIIRS) results in AET data that are high-resolution / high-frequency / continuous (no gaps due to cloud) and accurate. These are all ideal characteristics when calculating the water balance for a wetland, paddock, river reach, irrigation area, landscape or catchment. </p><p> Accurate AET information is important for irrigation, food security and environmental management. Like many other parts of the world, water availability in Australia is limited and AET is the largest consumptive component of the water balance. In Australia 70% of available water is used for crop and pasture irrigation and better monitoring will support improved water use efficiency in this sector, with any water savings available as environmental flows. Additionally, ground-water dependent ecosystems (GDE) occupy a small area yet are "biodiversity hotspots", and knowing their water needs allows for enhanced management of these critical areas in the landscape. Having high-resolution, frequent and accurate AET estimates for all of Australia means this AET data source can be used to model the water balance for any catchment / groundwater system in Australia. </p><p> Details of the CMRSET algorithm and its independent validation are provided in Guerschman, J.P., McVicar, T.R., Vleeshouwer, J., Van Niel, T.G., Peña-Arancibia, J.L. and Chen, Y. (2022) Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. Journal of Hydrology. 605, 127318, doi:10.1016/j.jhydrol.2021.127318</p> <p> <i>We strongly recommend users to use the TERN CMRSET AET V2.2</i>. Details of the TERN CMRSET AET V2.2 data product generation are provided in McVicar, T.R., Vleeshouwer, J., Van Niel, T.G., Guerschman, J.P., Peña-Arancibia, J.L. and Stenson, M.P. (2022) Generating a multi-decade gap-free high-resolution monthly actual evapotranspiration dataset for Australia using Landsat, MODIS and VIIRS data in the Google Earth Engine platform: Development and use cases. Journal of Hydrology (In Preparation).