Evolutionary ecology
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
Mating system and fitness data for families of <em>Eucalyptus socialis</em> grown in common garden experiments. Families collected across a fragmentation gradient. Open-pollinated progeny arrays were collected and reared in the common garden experiments. These open-pollinated progeny arrays were also genotyped at microsatellite loci to generate the mating system data. Data showed association between fragmentation on mating system, which in turn impacted fitness. Please contact owner prior to use.
-
<p> The dataset aims at studying associations between mating system parameters and fitness in natural populations of trees. Fifty-eight open-pollinated progeny arrays were collected from trees in three populations. Progeny were planted in a reciprocal transplant trial. Fitness was measured by family establishment rates. We genotyped all trees and their progeny at eight microsatellite loci. Planting site had a strong effect on fitness, but seed provenance and seed provenance × planting site did not. Populations had comparable mating system parameters and were generally outcrossed, experienced low biparental inbreeding and high levels of multiple paternity. As predicted, seed families that had more multiple paternities also had higher fitness, and no fitness-inbreeding correlations were detected. Demonstrating that fitness was most affected by multiple paternities rather than inbreeding, we provide evidence supporting the constrained inbreeding hypothesis; i.e. that multiple paternity may impact on fitness over and above that of inbreeding, particularly for preferentially outcrossing trees at life stages beyond seed development. This dataset could potentially be reused for meta-analysis or review of effects of habitat fragmentation on plants (e.g. pollination, mating system, genetic diversity etc). Please contact owner prior to re-use. </p> <p>This is part of the authors' PhD at the University of Adelaide, supervised by Prof Andrew Lowe, Dr Mike Gardner and Dr Kym Ottewell. Main goals of the project were 1. Examine and quantify the impact of fragmentation and tree density on mating patterns, and how this may vary with pollinators of differing mobility 2. Determine the theoretical expectations and perform empirical tests of mating pattern-fitness relationships in trees 3. Explore the plant genetic resource management implications that arise from the observations in aims 1 and 2 </p>
-
Microsatellite genotype data for 3 eucalypt species. Data include progeny and adults from across a gradient of habitat fragmentation. These microsatellite data could be further used in additional analyses, e.g. genetic diversity. Samples collected from stands on eucalypts as follows: non-neighbouring adult trees had leaf and seeds collected. Leaf was used to genotype the adults. Seeds were germinated, tissue then collected, and the same microsatellites genotyped - i.e. open-pollinated progeny arrays. The dataset is possibly useful for meta-analysis or review of effects of habitat fragmentation on plants (e.g. mating system, genetic diversity etc).
-
This data set is a collection of Highly Important Papers in Ecology (HIPE). Three files are included: VoteArticles.final.csv : a comma-delimited text file with the vote assessments on the relative quality of the submitted papers (Top 10, Between 11-25, Between 26-100 or Not in the top "100") and an indication of how well each voter knew the paper (Read it, Know it or Don't know it) HIP.refs.txt : tab-delimited text file with all paper bibliographic information citation.csv : a comma-delimited text file with the citation data (Google Scholar, Web of Knowledge) for each paper and each journal (Impact Factor).