Ecological Modelling
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
The data set contains distance measures of primary (wind-borne) and secondary (on ground) seed dispersal during spring, summer and autumn, using empirical observations and detailed measurement of wind characteristics. Seeds were collected from populations of <i>Callitris verrucosa</i> within the reserve and was placed parallel to, and 100 m from the burn edge within the burnt site. For the empirical observation of seed dispersal we chose six release locations, three locations in each of the two sites, about 6 km apart that had both recently undergone a planned burn, one in spring 2009 and the other in autumn 2011. Within those two sites the three release locations were positioned 800 m apart from each other along a transect that was placed parallel to, and 100 m from the burn edge within the burnt site. To assess primary (wind-borne) seed dispersal, 20 randomly chosen seeds were released from each of three different heights (1 m, 2 m and 3 m) at each of the six sites, giving a total of 360 seeds released per season. Seeds were only released within a horizontal wind speed range of 8 - 25 km/h. At lower wind speeds seeds would not take-off and at higher wind speeds seeds could not be relocated. This data set could be reused in a similar study carried out for the same species in a different location. <br> To understand the effect of standing vegetation on the secondary (on-ground) seed dispersal, we established groups of 10 seeds on the ground within 10 m of each of the six previous release locations. Seed were left for 4 days before relocated and distances to the starting point were measured. This was repeated during all 3 seasons. Out of the 180 seeds released,161 (89%) seeds could be relocated. <br> Wind measurements were taken on a sand dune crest in the site that was burned during autumn 2011 using an ultrasonic anemometer (Model WindMaster (Part 1590-PK-020), Gill Instruments Ltd, Lymington, UK). Measurements continued for two weeks in spring, summer and autumn. The anemometer measured horizontal wind speed, horizontal wind direction, and vertical wind speed every 0.1 s, producing a dynamic, three dimensional wind speed vector. Measurements were taken at 2 m height. The data can be used for studies dealing with wind movements in mallee during Spring, Summer and Autumn as well as comparative seed dispersal studies using the same or other wind dispersed plant species.
-
This is a collated plant survey data from the Fleurieu Peninsula wetlands (version.2). There is a biological and a spatial component to the dataset. [1] Biological data: This was collated from several sources, collected over the period 2000-2009 and used in the analyses for the paper <i>Diversity patterns of seasonal wetland plant communities mainly driven by rare terrestrial species</i> (Deane et al - Biodiversity and Conservation, DOI: <em>10.1007/s10531-016-1139-1</em>). Biological data were pre-processed to remove sampling bias (the method is described in the paper). Data are presence-absence of 215 native plant species (i.e., exotic species removed) from 76 seasonal wetlands (size range 0.5 - 35 ha) located on the Fleurieu Peninsula, South Australia (centred on latitude 35.5 °S). [2] Spatial data: For each of the 76 wetlands a small amount of spatial data is also provided. Area, centroids, elevation and catchment. The data could be of interest for any typical community data analysis (e.g. beta diversity, similarity, assembly), provided only native wetland plant species were of interest. Data were used to model extinction risk, species-area relationships, occupancy distributions and so on.
-
This data set is the result of the investigation on the response of littoral and floodplain vegetation and soil moisture flux to weir pool raising in 2015. The data was collected over 18 months between August 2015 and December 2016- before, during and after the weir pool levels were raised. The data set contains information on Tree Condition including crown extent and density, bark form, epicormic growth and state, reproduction, crown growth, leaf die off and damage, and mistletoe. Leaf Water Potential, taken predawn and in the middle of the day. Plant Area Index/Canopy Cover measurements using hemispherical photos. Soil Chemistry measurements- total soil moisture (gravimetric water content; %), soil suction (or soil matric potential), Electrical Conductivity and soil pH.
-
There are presence absence records for vegetation and matched hydrological data from 687 1 x 1 m quadrats recorded from 11 wetlands and wetland complexes (28 sampled hydrological gradients (referred to as transects) across the upper and lower southeast of South Australia. Plant data were collected in spring 2013. Hydrological monitoring data at each site consisted of continuous (6 hourly) surface water level data from a state agency monitoring network. Observed water levels at the monitoring instrument on the day of monitoring were related to the observed depth of water at each quadrat, assuming a flat, level water surface and obtain a datum for each quadrat relative to the monitoring instrument. The continuous monitoring record was then used to calculate a range of different hydrological predictors indicating the variation at each quadrat. The hydrological dataset provided are the univariate summary statistics recording different aspects of surface water dynamics for each quadrat. Hydrological predictors (sum-exceedance value, hydroperiod and maximum inundation depth) were calculated for annual and seasonal periods in the three-years prior to plant data collection. See metadata and relevant publication for additional details on calculation. Hydrological predictors for each quadrat are provided in a single matrix of sites by predictors, with relevant location details for the quadrat (xy coordinates, site, transect). Included is a single electrical conductivity class for each transect (ordinal variable - low moderate, high - see metadata). Vegetation data are provided as a single matrix (quadrats x plant functional group) showing presence absence of each functional group in each quadrat. There is also a lookup table giving the assignment of each plant species to a plant functional group.
-
FosSahul is the first database compiling the ages of nonhuman vertebrate fossils from the Middle Pleistocene to the present in the Sahul region. It includes comprehensive metadata with ratings of reliability allocated to each fossil age. Because ecological and evolutionary phenomena are time-dependent, the entire range of archaeological and palaeontological research disciplines benefit from the availability of this data.
-
The forest fuel survey dataset comprises site-level summary data from the well-designed fuel load surveys across 48 AusPlots Forests- 1-ha monitoring plots across Australia. Data presented here includes data on the surface, near-surface, and elevated fuel loads for each of the Forest Ausplots. It includes iButton data on 1) temperature and humidity, 2) data on litterfall and 3) decomposition rates. We also provide additional information on soil nutrient data, species composition of the understorey and midstorey, and panorama photos from the plot centre. This dataset is the second version of the <i> AusPlots Forest Fuel Survey site-level data summary, 2014 - 2015. Version 1.0.0. Terrestrial Ecosystem Research Network.</i> (dataset). <em>https://doi.org/10.25901/efnh-sk06</em>
-
Leaf traits for 101 populations of <i>Dodonaea viscosa subsp. angustissima </i>(Sapindaceae) opportunistically collected across a ~1,000 km latitudinal north-south sequence with climates grading from the arid zone to the mesic Mediterranean zone. Additionally, we present leaf traits for 266 individuals on an attitudinal gradient in the Mt Lofty Ranges, South Australia. Traits measured include leaf area and specific leaf area, as well as climatic variables associated with the collection sites. <p>Leaf area is known to be responsive to climatic conditions. This data could be combined with additional collections for Dodonaea viscosa or broader plant trait data sets to explore pant responses to environmental change.</p>