Keyword

Climate change impacts and adaptation

366 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 366
  • Categories    

    The Central Appalachian region, USA, contains several high elevation-endemic woodland salamanders (genus Plethodon), which are thought to be particularly vulnerable to climate change due to their restricted distributions and low vagility. In West Virginia, there is a strong management focus on protection and recovery of the federally threatened Cheat Mountain salamander (Plethodon nettingi; CMS). To support this focus, there is a need for improved understanding of CMS occurrence-habitat relationships and spatially explicit projections of fine-scale contemporary and potential future habitat quality to inform management actions. In addition, there is concern among resource managers that climate change may increase habitat quality at high elevations for CMS competitors, particularly the eastern red-backed salamander (Plethodon cinereus; RBS), potentially resulting in increased competition pressure for CMS. To address these knowledge gaps, we created ecological niche models for CMS and RBS using the Random Forest classification algorithm and used the estimated occurrence-habitat relationships to assess ecological niche overlap between the species and project fine-scale contemporary and potential future habitat availability and quality. We estimated that the ecological niches of CMS and RBS were 80.5% similar, and habitat projections indicated the species would exhibit opposite responses to climate change in our region. For CMS, we estimated that amount of high-quality habitat will be reduced by mid-century and potentially lost by end-of-century, but that moderate and low-quality habitat will persist. For RBS, we estimated that amount of high-quality habitat will increase through end-of-century, and that high elevations will become more suitable for the species, indicating that competition pressure for CMS is likely to increase. This study improves understanding of important habitat characteristics for CMS and RBS, and our spatially explicit projections can assist natural resource managers with habitat protection actions, species monitoring efforts, and climate change adaptation strategies.

  • Categories    

    This product provides locations of areas affected by fire including the approximate day of burning. Inputs are daily day time observations from MODIS sensors on Terra and Aqua. Observations are atmospherically corrected and the resulting time series is investigated for sudden changes in reflectance, persistent over multiple days. Variations in observation and illumination geometry are taken into account through application of a kernel driven Bidirectional Reflectance Distribution Function (BRDF) model.

  • Categories    

    Statewide composite of fire scars (burnt area) derived from all available Sentinel-2 images acquired over Queensland. It is available in both monthly and annual composites. Fire scars have been mapped using an automated change detection method, with supplementary manual interpretation. This data contains both automated and manually edited data.

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product here <a href="https://portal.tern.org.au/metadata/TERN/de2d53ec-1c00-46ac-bd01-d253ab0f2eb2">Seasonal dynamic reference cover method - Landsat, JRSRP algorithm version 3.0, Queensland Coverage</a>. The seasonal dynamic reference cover method images are created using a modified version of the dynamic reference cover method developed by <a href="https://doi.org/10.1016/j.rse.2012.02.021">Bastin et al (2012)</a>. This approach calculates a minimum ground cover image over all years to identify locations of most persistent ground cover in years with the lowest rainfall, then uses a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. The output is a difference image between the cover amount of a pixel's reference pixels and the actual cover at that pixel for the season being analysed. Negative values indicate pixels which have less cover than the reference pixels. <br> The main differences between this method and the original method are that this method uses seasonal fractional ground cover rather than the preceding ground cover index (GCI) and this method excludes cleared areas and certain landforms (undulating slopes), which are considered unsuitable for use as reference pixels.

  • Categories    

    RSMA measures change in the relative contributions of photosynthetic vegetation (PV, or GV green vegetation), non-photosynthetic vegetation (NPV) and soil reflectance compared to a baseline date. These spectral changes correspond to changes in fractional cover relative to the baseline date. Full details on the RSMA method are presented in Okin (2007). One of the key advantages of the RSMA, its insensitivity to changes in soil spectra, is a result of the fact that it does not require us to know the soil reflectance profile for a region. This strength is also the cause of a major weakness in RSMA. Since the measure is relative to a baseline date, and the absolute cover levels for every pixel are unknown at the baseline, the RSMA does not convey the absolute cover levels at any other point in time. However, if the absolute cover levels are known at any point in time, it is theoretically possible to convert the RSMA to absolute relative spectral mixture analysis (ARSMA).<br> As with all products derived from passive remote sensing imagery, this product represents the world as seen from above. Therefore, the cover recorded by this product represent what would be observed from a bird's-eye-view. Therefore, dense canopy may prevent observation of significant soil exposure.

  • Categories    

    Three maps are available: 1) foliage projective cover, 2) forest extent, attributed with the foliage projective cover and 3) accuracy of the extent maps, which also acts as masks of forest and other wooded lands. Each pixel in map 1 estimates the fraction of the ground covered by green foliage. Each pixel in map 2 shows two pieces of information. The first is a classification of whether the vegetation is forest or not. The pixels classified as forest are attributed with the second piece of information: the foliage projective cover. Each pixel in map 3 is a class that provides information on the classification accuracies of the woody extent. These maps are derived from Landsat.

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/TERN/169dbb12-846f-4536-9dab-e31378d16b41. Two fractional cover decile products, green cover and total cover, are currently produced from the historical timeseries of seasonal fractional cover images. These products compare, at the per-pixel level, the level of cover for the specific season of interest against the long term cover for that same season. For each pixel, all cover values for the relevant seasons within a baseline period (1988 to 2013) are classified into deciles. The cover value for the pixel in the season of interest is then classified according to the decile in which it falls.

  • Categories    

    The MODIS Land Condition Index (LCI) is an index of total vegetation cover (green and non-photosynthetic vegetation ), and so is also an index of soil exposure. The LCI is a normalised difference index based on MODIS bands in the mid-infrared portion of the spectrum. The index is produced from 500-m MODIS nadir BRDF adjusted reflectance (NBAR) data. As with all products derived from passive remote sensing imagery, this product represents the world as seen from above. Therefore, the cover recorded by this product represent what would be observed from a birds-eye-view. Therefore, dense canopy may prevent observation of significant soil exposure.

  • Categories    

    Two fractional cover decile products, green cover and total cover, are currently produced from the historical timeseries of seasonal fractional cover images across Australia, available for each 3-month calendar season. These products compare, at the per-pixel level, the level of cover for the specific season of interest against the long term cover for that same season. For each pixel, all cover values for the relevant seasons within a baseline period (1990 - 2020) are classified into deciles. The cover value for the pixel in the season of interest is then classified according to the decile in which it falls.<br> This product is based upon the JRSRP Fractional Cover 3.0 algorithm.

  • Categories    

    An estimate of persistent green cover per season across Australia from 1989 to the present season, minus 2 years. This is intended to estimate the portion of vegetation that does not completely senesce within a year, which primarily consists of woody vegetation (trees and shrubs), although there are exceptions where non-woody cover remains green all year round. It is derived by fitting a multi-iteration minimum weighted smoothing spline through the green fraction of the seasonal fractional cover (dp1) time series. A single band image is produced: persistent green vegetation cover (in percent). The no data value is 255.