30 meters - < 100 meters
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
The Central Appalachian region, USA, contains several high elevation-endemic woodland salamanders (genus Plethodon), which are thought to be particularly vulnerable to climate change due to their restricted distributions and low vagility. In West Virginia, there is a strong management focus on protection and recovery of the federally threatened Cheat Mountain salamander (Plethodon nettingi; CMS). To support this focus, there is a need for improved understanding of CMS occurrence-habitat relationships and spatially explicit projections of fine-scale contemporary and potential future habitat quality to inform management actions. In addition, there is concern among resource managers that climate change may increase habitat quality at high elevations for CMS competitors, particularly the eastern red-backed salamander (Plethodon cinereus; RBS), potentially resulting in increased competition pressure for CMS. To address these knowledge gaps, we created ecological niche models for CMS and RBS using the Random Forest classification algorithm and used the estimated occurrence-habitat relationships to assess ecological niche overlap between the species and project fine-scale contemporary and potential future habitat availability and quality. We estimated that the ecological niches of CMS and RBS were 80.5% similar, and habitat projections indicated the species would exhibit opposite responses to climate change in our region. For CMS, we estimated that amount of high-quality habitat will be reduced by mid-century and potentially lost by end-of-century, but that moderate and low-quality habitat will persist. For RBS, we estimated that amount of high-quality habitat will increase through end-of-century, and that high elevations will become more suitable for the species, indicating that competition pressure for CMS is likely to increase. This study improves understanding of important habitat characteristics for CMS and RBS, and our spatially explicit projections can assist natural resource managers with habitat protection actions, species monitoring efforts, and climate change adaptation strategies.
-
This is a spatial dataset comprising predictions of vegetation condition for biodiversity for the Southeast Queensland bioregion. The dataset was created using a gradient boosting decision tree (GBDT) model based on 10 vegetation-specific remote sensing datasets and 7,938 training sites of known vegetation community and condition state across Southeast Queensland, Brigalow Belt and Central Queensland Coast bioregions. Condition score was modelled as a function of distance in the remote sensing (RS) space within homogeneous vegetation communities. The product is intended to represent predicted BioCondition for 2021 rather than any singe date.
-
This is a spatial dataset comprising predictions of vegetation condition for biodiversity for the Brigalow Belt bioregion. The dataset was created using a gradient boosting decision tree (GBDT) model based on 10 vegetation-specific remote sensing datasets and 7,938 training sites of known vegetation community and condition state across Southeast Queensland, Brigalow Belt and Central Queensland Coast bioregions. Condition score was modelled as a function of distance in the remote sensing (RS) space within homogeneous vegetation communities. The product is intended to represent predicted BioCondition for 2021 rather than any singe date.
-
This dataset lists land surface substrate characteristics observed in Rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> Land surface substrate observations are collected at each site as part of the AusPlots Point intercept method. At each site, observations on the substrate type (e.g. rock, coarse woody debris, litter) are recorded on transect laid out on the plots. These records form the basis for ground cover derivation, see the AusPlots Ground cover and Point intercept methods below.<br />
-
This is a spatial dataset comprising predictions of vegetation condition for biodiversity for the Central Queensland Coast bioregion. The dataset was created using a gradient boosting decision tree (GBDT) model based on 10 vegetation-specific remote sensing datasets and 7,938 training sites of known vegetation community and condition state across Southeast Queensland, Brigalow Belt and Central Queensland Coast bioregions. Condition score was modelled as a function of distance in the remote sensing (RS) space within homogeneous vegetation communities. The product is intended to represent predicted BioCondition for 2021 rather than any singe date.
-
<p>Hemispherical photography has been collected across Australia to characterise plant canopy cover and structure, and to study leaf area index. Hemispherical photography is a technique for quantifying plant canopies via photographs captured through a digital camera with hemispherical or fisheye lens. Such photographs can be captured from beneath the canopy, looking upwards, (orientated towards zenith) or above the canopy looking downwards. These measurements have typically been collected in conjunction with the Statewide Landcover and Trees Study (SLATS) star transects field data together with plant canopy analysers such as LAI-2200 and CI-110.</p> <p>Data can be downloaded from https://field.jrsrp.com/ by selecting the combination Field and Hemispheric imagery. Photographs can be accesed through the right-hand side panel, or by finding the file_loc attribute in the csv file. </p>
-
Seasonal dynamic reference cover method - Landsat, JRSRP, Queensland and Northern Territory Coverage
This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product here <a href="https://portal.tern.org.au/metadata/24072">Seasonal dynamic reference cover method - Landsat, JRSRP algorithm version 3.0, Queensland Coverage</a>. The seasonal dynamic reference cover method images are created using a modified version of the dynamic reference cover method developed by <a href="https://doi.org/10.1016/j.rse.2012.02.021">Bastin et al (2012)</a>. This approach calculates a minimum ground cover image over all years to identify locations of most persistent ground cover in years with the lowest rainfall, then uses a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. The output is a difference image between the cover amount of a pixel's reference pixels and the actual cover at that pixel for the season being analysed. Negative values indicate pixels which have less cover than the reference pixels. <br> The main differences between this method and the original method are that this method uses seasonal fractional ground cover rather than the preceding ground cover index (GCI) and this method excludes cleared areas and certain landforms (undulating slopes), which are considered unsuitable for use as reference pixels.
-
The data set is a statewide annual composite of fire scars (burnt area) derived from all available Landsat 5, 7 and 8 images acquired over the period January to December using time series change detection. Fire scars are automatically detected and mapped using dense time series of Landsat imagery acquired over the period 1987 - present. In addition, from 2013, products have undergone significant quality assessment and manual editing. The automated Landsat fire scar map products covering the period 1987-2012 were validated using a Landsat-derived data set of over 500,000 random points sampling the spatial and temporal variability. On average, over 80% of fire scars captured in Landsat imagery have been correctly mapped with less than 30% false fire rate. These error rates are significantly reduced in the edited 2013-2016 fire scar data sets, although this has not been quantified. <br> For the 2016 annual fire scar composite, the manual editing stage incorporated Landsat and Sentinel 2A imagery (resampled to match Landsat spatial resolution), allowing for increased cloud-free ground observations, and an associated reduction in the number of missed fires (not quantified). Sentinel 2A images were primarily used to map fire scars that were otherwise undetectable in the Landsat sequence due to cloud cover/Landsat revisit time. Additionally, Landsat-7 SLC-Off imagery (affected by striping) was excluded from the 2016 annual composite. It is expected that these modifications should result in improved mapping accuracy for the 2016 period.<br> A new fire scar detection algorithm has been developed, with a new edited product implemented in 2021.
-
We used Digital Soil Mapping (DSM) technologies combined with the real-time collations of soil attribute data from TERN's recently developed Soil Data Federation System, to produce a map of Australian Soil Classification Soil Order classes with quantified estimates of mapping reliability at a 90 m resolution.
-
Three maps are available: 1) foliage projective cover, 2) forest extent, attributed with the foliage projective cover and 3) accuracy of the extent maps, which also acts as masks of forest and other wooded lands. Each pixel in map 1 estimates the fraction of the ground covered by green foliage. Each pixel in map 2 shows two pieces of information. The first is a classification of whether the vegetation is forest or not. The pixels classified as forest are attributed with the second piece of information: the foliage projective cover. Each pixel in map 3 is a class that provides information on the classification accuracies of the woody extent. These maps are derived from Landsat.