Loxton Flux Data Release 2022_v2
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br>
The Loxton site was established in August 2008 and decommissioned in June 2009. The orchard was divided into 10 ha blocks (200 m by 500 m with the long axis aligned north–south) and the flux tower was situated at 34.47035 °S and 140.65512 °E near the middle of the northern half of a block of trees. The topography of the site was slightly undulating and the area around the tower had a slope of less than 1.5 °. The orchard was planted in 2000 with an inter-row spacing of 7 m and a within row spacing of 5 m. Tree height in August 2008 was 5.5 m. The study block consists of producers, Nonpareil, planted every other row, and pollinators planted as alternating rows of Carmel, Carmel and Peerless, and Carmel and Price. All varieties were planted on Nemaguard rootstock. All but 31 ha of the surrounding orchard was planted between 1999 and 2002. Nutrients were applied via fertigation. Dosing occurred between September and November and in April with KNO<sub>3</sub>, Urea, KCl, and NH<sub>4</sub>NO<sub>3</sub> applied at annual rates of 551, 484, 647, and 113 kg/ha, respectively. The growth of ground cover along the tree line was suppressed with herbicides throughout the year. Growth in the mid-row began in late winter and persisted until herbicide application in late November.
The research was supported with funds from the National Action Plan for Salinity via the Centre for Natural Resource Management, and the River Murray Levy.
Simple
Identification info
- Date (Creation)
- 2008-08-19
- Date (Publication)
- 2024-05-03
- Date (Revision)
- 2024-12-16
- Edition
- 2022_v2
Identifier
Publisher
Author
Co-author
Co-author
Co-author
- Website
- https://www.tern.org.au/
- Purpose
- <p>The purpose of the Loxton flux station is to:</p> <ul> <li>measure the water use of about 4 ha of mature high-yielding almond trees.</li> <li>collect ancillary measures of orchard canopy size, water, nutrient and salinity status, and climate in the study area.</li> <li>address two of the weaknesses in this approach by calculating monthly flux footprints and deriving ET from fluxes which have been adjusted to close the energy balance.</li> </ul>
- Credit
- We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
- Credit
- <br>The research was supported with funds from the National Action Plan for Salinity via the Centre for Natural Resource Management, and the River Murray Levy.
- Status
- Completed
Point of contact
- Topic category
-
- Climatology, meteorology, atmosphere
Extent
- Description
- Riverland, South Australia.
Temporal extent
- Time period
- 2008-08-19 2009-09-06
- Title
- Stevens, R. M., Ewenz, C. M., Grigson, G. and Conner, S. M., 2012. Water use by an irrigated almond orchard, Irrig. Sci., 30(3), 189–200. doi:10.1007/s00271-011-0270-8
- Website
-
Stevens, R. M., Ewenz, C. M., Grigson, G. and Conner, S. M., 2012. Water use by an irrigated almond orchard, Irrig. Sci., 30(3), 189–200. doi:10.1007/s00271-011-0270-8
Related documentation
- Title
- Beringer J., Hutley L. B., McHugh I., Arndt S. K., Campbell D., Cleugh H. A., Cleverly J., Resco de Dios V., Eamus D., Evans B., Ewenz C., Grace P., Griebel A., Haverd V., Hinko-Najera N., Huete A., Isaac P., Kanniah K., Leuning R., Liddell M. J., Macfarlane C., Meyer W., Moore C., Pendall E., Phillips A., Phillips R. L., Prober S. M., Restrepo-Coupe N., Rutledge S., Schroder I., Silberstein R., Southall P., Yee M. S., Tapper N. J., van Gorsel E., Vote C., Walker J. and Wardlaw T. (2016). An introduction to the Australian and New Zealand flux tower network - OzFlux, Biogeosciences, 13: 5895-5916
- Maintenance and update frequency
- Not planned
- GCMD Science Keywords
-
- BIOGEOCHEMICAL PROCESSES
- LAND PRODUCTIVITY
- EVAPOTRANSPIRATION
- TERRESTRIAL ECOSYSTEMS
- ATMOSPHERIC PRESSURE MEASUREMENTS
- TURBULENCE
- WIND SPEED
- WIND DIRECTION
- TRACE GASES/TRACE SPECIES
- ATMOSPHERIC CARBON DIOXIDE
- PHOTOSYNTHETICALLY ACTIVE RADIATION
- LONGWAVE RADIATION
- SHORTWAVE RADIATION
- INCOMING SOLAR RADIATION
- HEAT FLUX
- AIR TEMPERATURE
- PRECIPITATION AMOUNT
- HUMIDITY
- SOIL MOISTURE/WATER CONTENT
- SOIL TEMPERATURE
- ANZSRC Fields of Research
- TERN Platform Vocabulary
- TERN Instrument Vocabulary
- TERN Parameter Vocabulary
-
- surface upward flux of available energy
- Watt per Square Meter
- longitudinal component of wind speed
- Square metres per square second
- surface friction velocity
- Meter per Second
- wind from direction
- Degree
- soil temperature
- degree Celsius
- surface upward latent heat flux
- Watt per Square Meter
- surface upward sensible heat flux
- Watt per Square Meter
- surface air pressure
- Kilopascal
- surface upwelling shortwave flux in air
- Watt per Square Meter
- air temperature
- degree Celsius
- surface downwelling longwave flux in air
- Watt per Square Meter
- vertical wind
- Meter per Second
- surface upward mole flux of carbon dioxide
- Micromoles per square metre second
- relative humidity
- Percent
- specific humidity
- Kilogram per Kilogram
- wind speed
- Meter per Second
- net ecosystem productivity
- Micromoles per square metre second
- net ecosystem exchange
- Micromoles per square metre second
- Monin-Obukhov length
- Meter
- volume fraction of condensed water in soil
- Cubic Meter per Cubic Meter
- surface upwelling longwave flux in air
- Watt per Square Meter
- downward heat flux at ground level in soil
- Watt per Square Meter
- water evapotranspiration flux
- Kilograms per square metre per second
- specific humidity saturation deficit in air
- Kilogram per Kilogram
- water vapor partial pressure in air
- Kilopascal
- ecosystem respiration
- Micromoles per square metre second
- surface net downward radiative flux
- Watt per Square Meter
- gross primary productivity
- Micromoles per square metre second
- mole fraction of carbon dioxide in air
- Micromoles per mole
- water vapor saturation deficit in air
- Kilopascal
- mass concentration of water vapor in air
- Gram per Cubic Meter
- surface downwelling shortwave flux in air
- Watt per Square Meter
- lateral component of wind speed
- Meter per Second
- surface downwelling photosynthetic photon flux in air
- Millimoles per square metre second
- mole fraction of water vapor in air
- Millimoles per mole
- magnitude of surface downward stress
- Kilograms per metre per square second
- thickness of rainfall amount
- Millimetre
- QUDT Units of Measure
-
- Watt per Square Meter
- Square metres per square second
- Meter per Second
- Degree
- degree Celsius
- Watt per Square Meter
- Watt per Square Meter
- Kilopascal
- Watt per Square Meter
- degree Celsius
- Watt per Square Meter
- Meter per Second
- Micromoles per square metre second
- Percent
- Kilogram per Kilogram
- Meter per Second
- Micromoles per square metre second
- Micromoles per square metre second
- Meter
- Cubic Meter per Cubic Meter
- Watt per Square Meter
- Watt per Square Meter
- Kilograms per square metre per second
- Kilogram per Kilogram
- Kilopascal
- Micromoles per square metre second
- Watt per Square Meter
- Micromoles per square metre second
- Micromoles per mole
- Kilopascal
- Gram per Cubic Meter
- Watt per Square Meter
- Meter per Second
- Millimoles per square metre second
- Millimoles per mole
- Kilograms per metre per square second
- Millimetre
- GCMD Horizontal Resolution Ranges
- GCMD Temporal Resolution Ranges
- Keywords (Discipline)
-
- AU-Lox
- deciduous broadleaf forests
Resource constraints
- Use limitation
- The Creative Commons Attribution 4.0 International (CC BY 4.0) license allows others to copy, distribute, display, and create derivative works provided that they credit the original source and any other nominated parties. Details are provided at https://creativecommons.org/licenses/by/4.0/
- File name
- 88x31.png
- File description
- CCBy Logo from creativecommons.org
- File type
- png
- Title
- Creative Commons Attribution 4.0 International Licence
- Alternate title
- CC-BY
- Edition
- 4.0
- Access constraints
- License
- Use constraints
- Other restrictions
- Other constraints
- TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure. <br /><br />Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.<br /><br />Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting
- Other constraints
- Please cite this dataset as {Author} ({PublicationYear}). {Title}. {Version, as appropriate}. Terrestrial Ecosystem Research Network. Dataset. {Identifier}.
Resource constraints
- Classification
- Unclassified
- Environment description
- <br>File naming convention</br> <br>The NetCDF files follow the naming convention below:</br> <br>SiteName_ProcessingLevel_FromDate_ToDate_Type.nc<ul style="list-style-type: disc;"> <li>SiteName: short name of the site</li> <li>ProcessingLevel: file processing level (L3, L4, L5, L6) </li> <li>FromDate: temporal interval (start), YYYYMMDD</li> <li>ToDate: temporal interval (end), YYYYMMDD</li> <li>Type (Level 6 only): Summary, Monthly, Daily, Cumulative, Annual</li></ul> For the NetCDF files at Level 6 (L6), there are several additional 'aggregated' files. For example: <ul style="list-style-type: disc;"> <li>Summary: This file is a summary of the L6 data for daily, monthly, annual and cumulative data. The files Monthly to Annual below are combined together in one file.</li> <li>Monthly: This file shows L6 monthly averages of the respective variables, e.g. AH, Fc, NEE, <em>etc.</em></li> <li>Daily: same as Monthly but with daily averages.</li> <li>Cumulative: File showing cumulative values for ecosystem respiration, evapo-transpiration, gross primary product, net ecosystem exchange and production as well as precipitation.</li> <li>Annual: same as Monthly but with annual averages.</li></ul>
Distribution Information
- Distribution format
-
Distributor
Distributor
- OnLine resource
- NetCDF files (2022_v2)
- OnLine resource
- ro-crate-metadata.json
Data quality info
- Hierarchy level
- Dataset
- Other
- <br>Processing levels</br> <br>Under each of the data release directories, the netcdf files are organised by processing levels (L3, L4, L5 and L6):<ul style="list-style-type: disc;"> <li>L3 (Level 3) processing applies a range of quality assurance/quality control measures (QA/QC) to the L1 data. The variable names are mapped to the standard variable names (CF 1.8) as part of this step. The L3 netCDF file is then the starting point for all further processing stages.</li> <li>L4 (Level 4) processing fills gaps in the radiation, meteorological and soil quantities utilising AWS (automated weather station), ACCESS-G (Australian Community Climate and Earth-System Simulator) and ERA5 (the fifth generation ECMWF atmospheric reanalysis of the global climate).</li> <li>L5 (Level 5) processing fills gaps in the flux data employing the artificial neural network SOLO (self-organising linear output map).</li> <li>L6 (Level 6) processing partitions the gap-filled NEE into GPP and ER.</li></ul> Each processing level has two sub-folders ‘default’ and ‘site_pi’:<ul style="list-style-type: disc;"> <li>default: contains files processed using PyFluxPro</li> <li>site_pi: contains files processed by the principal investigators of the site.</li></ul> If the data quality is poor, the data is filled from alternative sources. Filled data can be identified by the Quality Controls flags in the dataset. Quality control checks include: <ul style="list-style-type: disc;"> <li>range checks for plausible limits</li> <li>spike detection</li> <li>dependency on other variables</li> <li>manual rejection of date ranges</li></ul> Specific checks applied to the sonic and IRGA data include rejection of points based on the sonic and IRGA diagnostic values and on either automatic gain control (AGC) or CO<sub>2</sub> and H<sub>2</sub>O signal strength, depending upon the configuration of the IRGA.</br><br> Loxton Flux Tower was established in 2008, and stopped measuring in 2009. The processed data release is currently ongoing, biannually.“
Resource lineage
- Statement
- All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al. (2017).
- Hierarchy level
- Dataset
- Title
- Isaac P., Cleverly J., McHugh I., van Gorsel E., Ewenz C. and Beringer, J. (2017). OzFlux data: network integration from collection to curation, Biogeosciences, 14: 2903-2928
- Website
-
https://doi.org/10.5194/bg-14-2903-2017
Method documentation
- Title
- PyFluxPro
- Website
-
https://github.com/OzFlux/PyFluxPro/wiki
Method documentation
Reference System Information
- Reference system identifier
- EPSG/EPSG:4326
- Reference system type
- Geodetic Geographic 2D
Metadata
- Metadata identifier
-
urn:uuid/e1ec2ed3-9cc2-4eb3-829e-fc5187ec127f
- Title
- TERN GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
Point of contact
- Title
- Loxton Flux Data Collection
Identifier
- Codespace
- https://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/
- Description
- Parent Metadata Record
Type of resource
- Resource scope
- Dataset
- Metadata linkage
-
https://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/e1ec2ed3-9cc2-4eb3-829e-fc5187ec127f
Point-of-truth metadata URL
- Date info (Creation)
- 2022-03-17T00:00:00
- Date info (Revision)
- 2024-12-16T00:00:00
Metadata standard
- Title
- ISO 19115-1:2014/AMD 1:2018 Geographic information - Metadata - Fundamentals
- Edition
- 1
Metadata standard
- Title
- ISO/TS 19115-3:2016
- Edition
- 1.0
Metadata standard
- Title
- ISO/TS 19157-2:2016
- Edition
- 1.0
- Title
- Terrestrial Ecosystem Research Network (TERN) Metadata Profile of ISO 19115-3:2016 and ISO 19157-2:2016
- Date (published)
- 2021
- Edition
- 1.0