Ti Tree East Flux Data Release 2022_v2
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br>
<br>Ti Tree East site was established in July 2012 and is managed by the University of Technology Sydney. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years. However, the east side has not been stocked in over three years. The site is a mosaic of the primary semi-arid biomes of central Australia: grassy mulga woodland and <em>Corymbia/Triodia</em> savanna.The woodland is characterised by a mulga (<em>Acacia aneura</em>) canopy, which is 4.85 m tall on average. The soil is red sand overlying an 8 m deep water table. Elevation of the site is 553 m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (30 km to the south) Bureau of Meteorology station is 305.9 mm but ranges between 100 mm in 2009 to 750 mm in 2010. Predominant wind directions are from the southeast and east.</br>
<br>The instrument mast is 10 m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 9.81 m. Supplementary measurements above the canopy include temperature and humidity (9.81 m), windspeed and wind direction (8.28 m), downwelling and upwelling shortwave and longwave radiation (9.9 m). Precipitation is monitored in the savanna (2.5 m). Supplementary measurements within and below the canopy include barometric pressure (2 m). Below ground soil measurements are made beneath Triodia, mulga and grassy understorey and include ground heat flux (0.08 m), soil temperature (0.02 m - 0.06 m) and soil moisture (0 - 0.1 m, 0.1 - 0.3 m, 0.6 - 0.8 m and 1.0 - 1.2 m).</br>
Simple
Identification info
- Date (Creation)
- 2012-07-18
- Date (Publication)
- 2023-03-29
- Date (Revision)
- 2024-05-12
- Edition
- 2022_v2
Identifier
Publisher
Author
Co-author
Co-author
Co-author
- Website
- https://www.tern.org.au/
- Purpose
- The purpose of Ti Tree East flux station is to:<ul style="list-style-type: disc;"> <li>measure the exchanges of carbon dioxide, water vapour and energy in a semi-arid ecosystem with potential access to groundwater</li> <li>identify flux footprints associated with contributions by mulga versus <em>Corymbia</em> savannas</li> <li>compare water use efficiency, GPP and ecosystem respiration between adjacent semi-arid ecosystems (Alice Springs mulga)</li> <li>identify relationships between groundwater, soil moisture, rainfall and evapotranspiration</li> <li>identify phenological trends and to relate phenology to flux footprints and remote sensing of water and carbon fluxes.</li></ul>
- Credit
- We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
- Credit
- <br></br> Ti Tree East flux station is managed by the University of Technology Sydney. It is established in conjunction with the TERN Alice Springs Supersite, the Alice Springs OzFlux site and the Woodforde River NGCRT Superscience Site.
- Status
- On going
Point of contact
Point of contact
- Topic category
-
- Climatology, meteorology, atmosphere
Extent
- Description
- Pine Hill cattle station, Northern Territory.
Temporal extent
- Time period
- 2012-07-18
- Title
- Beringer J., Hutley L. B., McHugh I., Arndt S. K., Campbell D., Cleugh H. A., Cleverly J., Resco de Dios V., Eamus D., Evans B., Ewenz C., Grace P., Griebel A., Haverd V., Hinko-Najera N., Huete A., Isaac P., Kanniah K., Leuning R., Liddell M. J., Macfarlane C., Meyer W., Moore C., Pendall E., Phillips A., Phillips R. L., Prober S. M., Restrepo-Coupe N., Rutledge S., Schroder I., Silberstein R., Southall P., Yee M. S., Tapper N. J., van Gorsel E., Vote C., Walker J. and Wardlaw T. (2016). An introduction to the Australian and New Zealand flux tower network - OzFlux, Biogeosciences, 13: 5895-5916
- Maintenance and update frequency
- Biannually
- GCMD Science Keywords
-
- BIOGEOCHEMICAL PROCESSES
- LAND PRODUCTIVITY
- EVAPOTRANSPIRATION
- TERRESTRIAL ECOSYSTEMS
- ATMOSPHERIC PRESSURE MEASUREMENTS
- TURBULENCE
- WIND SPEED
- WIND DIRECTION
- TRACE GASES/TRACE SPECIES
- ATMOSPHERIC CARBON DIOXIDE
- PHOTOSYNTHETICALLY ACTIVE RADIATION
- LONGWAVE RADIATION
- SHORTWAVE RADIATION
- INCOMING SOLAR RADIATION
- HEAT FLUX
- AIR TEMPERATURE
- PRECIPITATION AMOUNT
- HUMIDITY
- SOIL MOISTURE/WATER CONTENT
- SOIL TEMPERATURE
- ANZSRC Fields of Research
- TERN Platform Vocabulary
- TERN Instrument Vocabulary
- TERN Parameter Vocabulary
-
- air temperature
- degree Celsius
- water evapotranspiration flux
- Kilograms per square metre per second
- ecosystem respiration
- Micromoles per square metre second
- specific humidity saturation deficit in air
- Kilogram per Kilogram
- surface downwelling longwave flux in air
- Watt per Square Meter
- mole fraction of carbon dioxide in air
- Micromoles per mole
- soil temperature
- degree Celsius
- surface upward mole flux of carbon dioxide
- Micromoles per square metre second
- volume fraction of condensed water in soil
- Cubic Meter per Cubic Meter
- wind speed
- Meter per Second
- net ecosystem exchange
- Micromoles per square metre second
- mass concentration of water vapor in air
- Gram per Cubic Meter
- surface air pressure
- Kilopascal
- lateral component of wind speed
- Meter per Second
- net ecosystem productivity
- Micromoles per square metre second
- surface upwelling longwave flux in air
- Watt per Square Meter
- surface net downward radiative flux
- Watt per Square Meter
- surface upward sensible heat flux
- Watt per Square Meter
- Monin-Obukhov length
- Meter
- downward heat flux at ground level in soil
- Watt per Square Meter
- surface upward flux of available energy
- Watt per Square Meter
- surface upwelling shortwave flux in air
- Watt per Square Meter
- surface upward latent heat flux
- Watt per Square Meter
- magnitude of surface downward stress
- Kilograms per metre per square second
- vertical wind
- Meter per Second
- mole fraction of water vapor in air
- Millimoles per mole
- relative humidity
- Percent
- longitudinal component of wind speed
- Square metres per square second
- specific humidity
- Kilogram per Kilogram
- water vapor saturation deficit in air
- Kilopascal
- thickness of rainfall amount
- Millimetre
- water vapor partial pressure in air
- Kilopascal
- wind from direction
- Degree
- gross primary productivity
- Micromoles per square metre second
- surface friction velocity
- Meter per Second
- surface downwelling shortwave flux in air
- Watt per Square Meter
- QUDT Units of Measure
-
- degree Celsius
- Kilograms per square metre per second
- Micromoles per square metre second
- Kilogram per Kilogram
- Watt per Square Meter
- Micromoles per mole
- degree Celsius
- Micromoles per square metre second
- Cubic Meter per Cubic Meter
- Meter per Second
- Micromoles per square metre second
- Gram per Cubic Meter
- Kilopascal
- Meter per Second
- Micromoles per square metre second
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Meter
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Kilograms per metre per square second
- Meter per Second
- Millimoles per mole
- Percent
- Square metres per square second
- Kilogram per Kilogram
- Kilopascal
- Millimetre
- Kilopascal
- Degree
- Micromoles per square metre second
- Meter per Second
- Watt per Square Meter
- GCMD Horizontal Resolution Ranges
- GCMD Temporal Resolution Ranges
- Keywords (Discipline)
-
- AU-TTE
- mulga woodland
Resource constraints
- Use limitation
- The Creative Commons Attribution 4.0 International (CC BY 4.0) license allows others to copy, distribute, display, and create derivative works provided that they credit the original source and any other nominated parties. Details are provided at https://creativecommons.org/licenses/by/4.0/
- File name
- 88x31.png
- File description
- CCBy Logo from creativecommons.org
- File type
- png
- Title
- Creative Commons Attribution 4.0 International Licence
- Alternate title
- CC-BY
- Edition
- 4.0
- Access constraints
- License
- Use constraints
- Other restrictions
- Other constraints
- TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure. <br /><br />Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.<br /><br />Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting
- Other constraints
- Please cite this dataset as {Author} ({PublicationYear}). {Title}. {Version, as appropriate}. Terrestrial Ecosystem Research Network. Dataset. {Identifier}.
Resource constraints
- Classification
- Unclassified
- Environment description
- <br>File naming convention</br> <br>The NetCDF files follow the naming convention below:</br> <br>SiteName_ProcessingLevel_FromDate_ToDate_Type.nc<ul style="list-style-type: disc;"> <li>SiteName: short name of the site</li> <li>ProcessingLevel: file processing level (L3, L4, L5, L6) </li> <li>FromDate: temporal interval (start), YYYYMMDD</li> <li>ToDate: temporal interval (end), YYYYMMDD</li> <li>Type (Level 6 only): Summary, Monthly, Daily, Cumulative, Annual</li></ul> For the NetCDF files at Level 6 (L6), there are several additional 'aggregated' files. For example: <ul style="list-style-type: disc;"> <li>Summary: This file is a summary of the L6 data for daily, monthly, annual and cumulative data. The files Monthly to Annual below are combined together in one file.</li> <li>Monthly: This file shows L6 monthly averages of the respective variables, e.g. AH, Fc, NEE, <em>etc.</em></li> <li>Daily: same as Monthly but with daily averages.</li> <li>Cumulative: File showing cumulative values for ecosystem respiration, evapo-transpiration, gross primary productivity, net ecosystem exchange and production as well as precipitation.</li> <li>Annual: same as Monthly but with annual averages.</li></ul>
Distribution Information
Distributor
Distributor
- Distribution format
-
- OnLine resource
- NetCDF files (2022_v2)
- OnLine resource
- ro-crate-metadata.json
Data quality info
- Hierarchy level
- Dataset
- Other
- <br>Processing levels</br> <br>Under each of the data release directories, the netcdf files are organised by processing levels (L3, L4, L5 and L6):<ul style="list-style-type: disc;"> <li>L3 (Level 3) processing applies a range of quality assurance/quality control measures (QA/QC) to the L1 data. The variable names are mapped to the standard variable names (CF 1.8) as part of this step. The L3 netCDF file is then the starting point for all further processing stages.</li> <li>L4 (Level 4) processing fills gaps in the radiation, meteorological and soil quantities utilising AWS (automated weather station), ACCESS-G (Australian Community Climate and Earth-System Simulator) and ERA5 (the fifth generation ECMWF atmospheric reanalysis of the global climate).</li> <li>L5 (Level 5) processing fills gaps in the flux data employing the artificial neural network SOLO (self-organising linear output map).</li> <li>L6 (Level 6) processing partitions the gap-filled NEE into GPP and ER.</li></ul> Each processing level has two sub-folders ‘default’ and ‘site_pi’:<ul style="list-style-type: disc;"> <li>default: contains files processed using PyFluxPro</li> <li>site_pi: contains files processed by the principal investigators of the site.</li></ul> If the data quality is poor, the data is filled from alternative sources. Filled data can be identified by the Quality Controls flags in the dataset. Quality control checks include: <ul style="list-style-type: disc;"> <li>range checks for plausible limits</li> <li>spike detection</li> <li>dependency on other variables</li> <li>manual rejection of date ranges</li></ul> Specific checks applied to the sonic and IRGA data include rejection of points based on the sonic and IRGA diagnostic values and on either automatic gain control (AGC) or CO<sub>2</sub> and H<sub>2</sub>O signal strength, depending upon the configuration of the IRGA.</br>
Resource lineage
- Statement
- All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al. (2017).
- Hierarchy level
- Dataset
- Title
- Isaac P., Cleverly J., McHugh I., van Gorsel E., Ewenz C. and Beringer, J. (2017). OzFlux data: network integration from collection to curation, Biogeosciences, 14: 2903-2928
- Website
-
https://doi.org/10.5194/bg-14-2903-2017
Method documentation
- Title
- PyFluxPro
- Website
-
https://github.com/OzFlux/PyFluxPro/wiki
Method documentation
Reference System Information
- Reference system identifier
- EPSG/EPSG:4326
- Reference system type
- Geodetic Geographic 2D
Metadata
- Metadata identifier
-
urn:uuid/ddbb1e78-a5c4-4003-98a2-aa58548944e7
- Title
- TERN GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
Point of contact
- Title
- Ti Tree East Flux Data Collection
Identifier
- Codespace
- https://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/
- Description
- Parent Metadata Record
Type of resource
- Resource scope
- Dataset
- Metadata linkage
-
https://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/ddbb1e78-a5c4-4003-98a2-aa58548944e7
Point-of-truth metadata URL
- Date info (Creation)
- 2022-03-17T00:00:00
- Date info (Revision)
- 2024-05-12T00:00:00
Metadata standard
- Title
- ISO 19115-1:2014/AMD 1:2018 Geographic information - Metadata - Fundamentals
- Edition
- 1
Metadata standard
- Title
- ISO/TS 19115-3:2016
- Edition
- 1.0
Metadata standard
- Title
- ISO/TS 19157-2:2016
- Edition
- 1.0
- Title
- Terrestrial Ecosystem Research Network (TERN) Metadata Profile of ISO 19115-3:2016 and ISO 19157-2:2016
- Date (published)
- 2021
- Edition
- 1.0