Loxton Flux Data Release 2021_v1
This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href=" https://doi.org/10.5194/bg-14-2903-2017 "> https://doi.org/10.5194/bg-14-2903-2017 </a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href=" https://github.com/OzFlux/PyFluxPro/wiki "> https://github.com/OzFlux/PyFluxPro/wiki </a>.
<br /> <br />
The Loxton site was established in August 2008 and decommissioned in June 2009. The orchard was divided into 10 ha blocks (200 m by 500 m with the long axis aligned north–south) and the flux tower was situated at 34.47035°S and 140.65512°E near the middle of the northern half of a block of trees. The topography of the site was slightly undulating and the area around the tower had a slope of less than 1.5°. The orchard was planted in 2000 with an inter-row spacing of 7 m and a within row spacing of 5 m. Tree height in August 2008 was 5.5 m. The study block consists of producers, Nonpareil, planted every other row, and pollinators planted as alternating rows of Carmel, Carmel and Peerless, and Carmel and Price. All varieties were planted on Nemaguard rootstock. All but 31 ha of the surrounding orchard was planted between 1999 and 2002. Nutrients were applied via fertigation. Dosing occurred between September and November and in April with KNO3, Urea, KCl, and NH4NO3 applied at annual rates of 551, 484, 647, and 113 kg/ha, respectively. The growth of ground cover along the tree line was suppressed with herbicides throughout the year. Growth in the mid-row began in late winter and persisted until herbicide application in late November. <br>
The research was supported with funds from the National Action Plan for Salinity via the Centre for Natural Resource Management, and the River Murray Levy.<br />This data is also available at http://data.ozflux.org.au . <br>
Simple
Identification info
- Date (Creation)
- 2021-08-06
- Date (Publication)
- 2021-09-19
- Date (Revision)
- 2024-12-16
- Edition
- 1.0
Identifier
Publisher
Author
Co-author
Co-author
Co-author
- Website
- https://www.tern.org.au/
- Purpose
- The purpose of the Loxton flux station is to measure the water use of about 4 ha of mature high-yielding almond trees. The study area was surrounded by almonds undergoing a similar irrigation regime. Ancillary measures of orchard canopy size; water, nutrient and salinity status, and climate were also collected. Two of the weaknesses in this approach, uncertainty about the origin of fluxes and lack of energy balance closure, were addressed by calculating monthly flux footprints and deriving ET from fluxes which have been adjusted to close the energy balance.
- Credit
- We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
- Credit
- The research was supported with funds from the National Action Plan for Salinity via the Centre for Natural Resource Management, and the River Murray Levy.
- Status
- Completed
Point of contact
- Topic category
-
- Climatology, meteorology, atmosphere
Extent
- Description
- Riverland, South Australia.
Temporal extent
- Time period
- 2008-08-19 2009-06-09
- Title
- Stevens, R. M., Ewenz, C. M., Grigson, G. and Conner, S. M., 2012. Water use by an irrigated almond orchard, Irrig. Sci., 30(3), 189–200. doi:10.1007/s00271-011-0270-8
- Website
-
Stevens, R. M., Ewenz, C. M., Grigson, G. and Conner, S. M., 2012. Water use by an irrigated almond orchard, Irrig. Sci., 30(3), 189–200. doi:10.1007/s00271-011-0270-8
Related documentation
- Title
- Isaac, Peter et al., 2017. OzFlux data: network integration from collection to curation. Biogeosciences, 14(12). doi:10.5194/bg-14-2903-2017
- Website
-
Isaac, Peter et al., 2017. OzFlux data: network integration from collection to curation. Biogeosciences, 14(12). doi:10.5194/bg-14-2903-2017
Related documentation
- Title
- Beringer, Jason et al., 2016. An introduction to the Australian and New Zealand flux tower network – OzFlux. Biogeosciences, 13(21). doi:10.5194/bg-13-5895-2016
- Website
-
Beringer, Jason et al., 2016. An introduction to the Australian and New Zealand flux tower network – OzFlux. Biogeosciences, 13(21). doi:10.5194/bg-13-5895-2016
Related documentation
- Maintenance and update frequency
- Biannually
- GCMD Science Keywords
-
- BIOGEOCHEMICAL PROCESSES
- LAND PRODUCTIVITY
- EVAPOTRANSPIRATION
- TERRESTRIAL ECOSYSTEMS
- ATMOSPHERIC PRESSURE MEASUREMENTS
- TURBULENCE
- WIND SPEED
- WIND DIRECTION
- TRACE GASES/TRACE SPECIES
- ATMOSPHERIC CARBON DIOXIDE
- PHOTOSYNTHETICALLY ACTIVE RADIATION
- LONGWAVE RADIATION
- SHORTWAVE RADIATION
- INCOMING SOLAR RADIATION
- HEAT FLUX
- AIR TEMPERATURE
- PRECIPITATION AMOUNT
- HUMIDITY
- SOIL MOISTURE/WATER CONTENT
- SOIL TEMPERATURE
- ANZSRC Fields of Research
- TERN Platform Vocabulary
- TERN Instrument Vocabulary
- TERN Parameter Vocabulary
-
- mass concentration of carbon dioxide in air
- Milligram per Cubic Meter
- surface upward latent heat flux
- Watt per Square Meter
- downward heat flux at ground level in soil
- Watt per Square Meter
- surface downwelling longwave flux in air
- Watt per Square Meter
- surface upwelling longwave flux in air
- Watt per Square Meter
- surface downwelling shortwave flux in air
- Watt per Square Meter
- surface upwelling shortwave flux in air
- Watt per Square Meter
- thickness of rainfall amount
- Millimetre
- relative humidity
- Percent
- specific humidity
- Kilogram per Kilogram
- air temperature
- degree Celsius
- soil temperature
- degree Celsius
- water vapor partial pressure in air
- Kilopascal
- water vapor saturation deficit in air
- Kilopascal
- wind from direction
- Degree
- wind speed
- Meter per Second
- surface air pressure
- Kilopascal
- surface net downward radiative flux
- Watt per Square Meter
- surface upward sensible heat flux
- Watt per Square Meter
- mass concentration of water vapor in air
- Gram per Cubic Meter
- surface upward flux of available energy
- Watt per Square Meter
- magnitude of surface downward stress
- Kilograms per metre per square second
- mole fraction of water vapor in air
- Millimoles per mole
- Monin-Obukhov length
- Meter
- specific humidity saturation deficit in air
- Kilogram per Kilogram
- eastward wind
- Meter per Second
- northward wind
- Meter per Second
- vertical wind
- Meter per Second
- ecosystem respiration
- Micromoles per square metre second
- water evapotranspiration flux
- Kilograms per square metre per second
- gross primary productivity of biomass expressed as carbon
- Micromoles per square metre second
- net ecosystem exchange
- Micromoles per square metre second
- net ecosystem productivity
- Micromoles per square metre second
- surface upward mole flux of carbon dioxide
- Micromoles per square metre second
- surface friction velocity
- Meter per Second
- mole fraction of carbon dioxide in air
- Micromoles per mole
- surface downwelling photosynthetic photon flux in air
- Millimoles per square metre second
- upward mole flux of carbon dioxide due inferred from storage
- Micromoles per square metre second
- volume fraction of condensed water in soil
- Cubic Meter per Cubic Meter
- QUDT Units of Measure
-
- Milligram per Cubic Meter
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Millimetre
- Percent
- Kilogram per Kilogram
- degree Celsius
- degree Celsius
- Kilopascal
- Kilopascal
- Degree
- Meter per Second
- Kilopascal
- Watt per Square Meter
- Watt per Square Meter
- Gram per Cubic Meter
- Watt per Square Meter
- Kilograms per metre per square second
- Millimoles per mole
- Meter
- Kilogram per Kilogram
- Meter per Second
- Meter per Second
- Meter per Second
- Micromoles per square metre second
- Kilograms per square metre per second
- Micromoles per square metre second
- Micromoles per square metre second
- Micromoles per square metre second
- Micromoles per square metre second
- Meter per Second
- Micromoles per mole
- Millimoles per square metre second
- Micromoles per square metre second
- Cubic Meter per Cubic Meter
- GCMD Horizontal Resolution Ranges
- GCMD Temporal Resolution Ranges
- Keywords (Discipline)
-
- AU-Lox
- deciduous broadleaf forests
Resource constraints
- Use limitation
- The Creative Commons Attribution 4.0 International (CC BY 4.0) license allows others to copy, distribute, display, and create derivative works provided that they credit the original source and any other nominated parties. Details are provided at https://creativecommons.org/licenses/by/4.0/
- File name
- 88x31.png
- File description
- CCBy Logo from creativecommons.org
- File type
- png
- Title
- Creative Commons Attribution 4.0 International Licence
- Alternate title
- CC-BY
- Edition
- 4.0
- Access constraints
- License
- Use constraints
- Other restrictions
- Other constraints
- TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure. <br /><br />Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.<br /><br />Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting
Resource constraints
- Classification
- Unclassified
Distribution Information
- Distribution format
-
Distributor
Distributor
- OnLine resource
- NetCDF files (2021_v1)
- OnLine resource
- ro-crate-metadata.json
Data quality info
- Hierarchy level
- Dataset
- Other
- If the data quality is poor, the data is filled from alternative sources. Filled data can be identified by the Quality Controls flags in the dataset. Quality control checks include (i) range checks for plausible limits, (ii) spike detection, (iii) dependency on other variables and (iv) manual rejection of date ranges. Specific checks applied to the sonic and IRGA data include rejection of points based on the sonic and IRGA diagnostic values and on either automatic gain control (AGC) or CO2 and H2O signal strength, depending upon the configuration of the IRGA. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017. <br> For further information about the software (PyFluxPro) used to process and quality control the flux data, see https://github.com/OzFlux/PyFluxPro/wiki.
Resource lineage
- Statement
- All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 .
- Hierarchy level
- Dataset
Reference System Information
- Reference system identifier
- EPSG/EPSG:4326
- Reference system type
- Geodetic Geographic 2D
Metadata
- Metadata identifier
-
urn:uuid/a88bb2d1-4421-4de4-a4c5-c03b17a9eb61
- Title
- TERN GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
Point of contact
Type of resource
- Resource scope
- Dataset
- Metadata linkage
-
https://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/a88bb2d1-4421-4de4-a4c5-c03b17a9eb61
Point-of-truth metadata URL
- Date info (Creation)
- 2021-08-06T00:00:00
- Date info (Revision)
- 2024-12-16T00:00:00
Metadata standard
- Title
- ISO 19115-1:2014/AMD 1:2018 Geographic information - Metadata - Fundamentals
- Edition
- 1
Metadata standard
- Title
- ISO/TS 19115-3:2016
- Edition
- 1.0
Metadata standard
- Title
- ISO/TS 19157-2:2016
- Edition
- 1.0
- Title
- Terrestrial Ecosystem Research Network (TERN) Metadata Profile of ISO 19115-3:2016 and ISO 19157-2:2016
- Date (published)
- 2021
- Edition
- 1.0