Cape Tribulation Flux Data Release 2022_v1
This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href=" https://doi.org/10.5194/bg-14-2903-2017 "> https://doi.org/10.5194/bg-14-2903-2017 </a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href=" https://github.com/OzFlux/PyFluxPro/wiki "> https://github.com/OzFlux/PyFluxPro/wiki </a>.<br /> <br />The Cape Tribulation flux station was located in the land that is adjacent to the Daintree National Park which is part of the Wet Tropics World Heritage Area (WTWHA). The site is flanked to the west by coastal ranges rising to more than 1400m and to the east by the Coral Sea. The red clay loam podzolic soils are of metamorphic origin and have good drainage characteristics. The metamorphic rocks grade into granite boulders along Thompson Creek which runs along the northern boundary of the site. The crane site itself is gently sloping but the fetch area makes the site one of very complex terrain. The forest is classed as complex mesophyll vine forest (type 1a) and has an average canopy height of 25m. The dominant canopy trees belong to the Apocynaceae, Arecaceae, Euphorbiaceae, Lauraceae, Meliaceae, Myristicaceae and Myrtaceae families. The forest is continuous for several kilometres around the crane except for an area 300m due east of the crane, which is regrowth forest. Annual average rainfall at the site is around 5180mm and is strongly seasonal, with 66% falling between January and April (wet season). Mean daily temperature ranges from 26.6°C in February to 21.2°C in July. <br> Tropical cyclones are a frequent occurrence in Far North Queensland. These severe tropical storm systems are natural phenomena which play a major role in determining the ecology of Queensland's tropical lowland rainforests. In March 1999 Tropical Cyclone Rona (Category 3) passed over the Cape Tribulation area causing widespread damage (gusts >170km/h). At the site several large trees fell, nearly all of the remaining trees were stripped of leaves and the lianas towers were torn to ground level. <br> The flux station was mounted at the 45m level on the tower of the Australian Canopy Crane external link. The canopy crane is a Liebherr 91 EC, freestanding construction tower crane. The crane is 48.5 metres tall with a radius of 55 metres enabling access to 1 hectare of rainforest. Fluxes of heat, water vapour and carbon dioxide were measured using the open-path eddy covariance technique. Supplementary measurements above the canopy included temperature, humidity, rainfall, total solar; these measurements have continued post the flux system decommissioning. Heat flux, soil temperature and water content (time domain reflectometry) were measured in proximity to the flux station; these measurements have continued post the flux system decommissioning. Detailed biometric measurements are made at the crane site and all trees have regular (5 yearly) dbh measurements and canopy mapping carried out. Monitoring bores (3) are located on site. Leaf litter measurements are carried out on a monthly basis. <br> For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/daintree-rainforest-supersite/ .<br /><br />
Simple
Identification info
- Date (Creation)
- 2022-03-17
- Date (Publication)
- 2022-03-27
- Date (Revision)
- 2024-05-07
- Edition
- 1.0
Identifier
Publisher
Author
Co-author
- Website
- https://www.tern.org.au/
- Purpose
- The purpose of the Cape Tribulation flux station is to :<br /> measure exchanges of carbon dioxide, water vapour and energy between the tropical rainforest and the atmosphere using micrometeorological techniques<br /> quantify the changes in carbon and energy balances of an Australian tropical rainforest during the course of post-cyclone canopy recovery. Closely linked to the micrometeorological ecosystem-level studies are leaf-level studies of the major tree and liana species at the site (Dr Owin Atkin, ANU; Dr Peter Hietz, Vienna) and water balance and soil carbon studies (Drs P. Nelson, Marc Le Blanc, JCU)<br /> recommend management strategies for the conservation of carbon stores in tropical rainforest ecosystems that are subject to relatively frequent cyclone disturbance. <br />
- Credit
- We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
- Credit
- The Cape Tribulation flux station is managed by the James Cook University as part of the TERN (DIISR funded) FNQ Rainforest Supersite. Equipment was provided by grants from the ARC external link (RIEFP) and JCU. <br> Past support was from the Rainforest CRC and Department of Environment and Heritage - Marine and Tropical Sciences Research Facility Project 5ii.2. Climate Change: Scaling from trees to ecosystems.
- Status
- Completed
Point of contact
- Topic category
-
- Climatology, meteorology, atmosphere
Extent
- Description
- Daintree Rainforest Observatory, Cape Tribulation, Queensland.
Temporal extent
- Time period
- 2010-01-01 2018-11-02
- Title
- Isaac, Peter et al., 2017. OzFlux data: network integration from collection to curation. Biogeosciences, 14(12). doi:10.5194/bg-14-2903-2017
- Website
-
Isaac, Peter et al., 2017. OzFlux data: network integration from collection to curation. Biogeosciences, 14(12). doi:10.5194/bg-14-2903-2017
Related documentation
- Title
- Beringer, Jason et al., 2016. An introduction to the Australian and New Zealand flux tower network – OzFlux. Biogeosciences, 13(21). doi:10.5194/bg-13-5895-2016
- Website
-
Beringer, Jason et al., 2016. An introduction to the Australian and New Zealand flux tower network – OzFlux. Biogeosciences, 13(21). doi:10.5194/bg-13-5895-2016
Related documentation
- Title
- Daintree Rainforest SuperSite
- Website
-
Daintree Rainforest SuperSite
Related documentation
- Maintenance and update frequency
- Not planned
- GCMD Science Keywords
-
- BIOGEOCHEMICAL PROCESSES
- LAND PRODUCTIVITY
- EVAPOTRANSPIRATION
- TERRESTRIAL ECOSYSTEMS
- ATMOSPHERIC PRESSURE MEASUREMENTS
- TURBULENCE
- WIND SPEED
- WIND DIRECTION
- TRACE GASES/TRACE SPECIES
- ATMOSPHERIC CARBON DIOXIDE
- PHOTOSYNTHETICALLY ACTIVE RADIATION
- LONGWAVE RADIATION
- SHORTWAVE RADIATION
- INCOMING SOLAR RADIATION
- HEAT FLUX
- AIR TEMPERATURE
- PRECIPITATION AMOUNT
- HUMIDITY
- SOIL MOISTURE/WATER CONTENT
- SOIL TEMPERATURE
- ANZSRC Fields of Research
- TERN Platform Vocabulary
- TERN Instrument Vocabulary
- TERN Parameter Vocabulary
-
- mass concentration of carbon dioxide in air
- Milligram per Cubic Meter
- surface upward latent heat flux
- Watt per Square Meter
- downward heat flux at ground level in soil
- Watt per Square Meter
- surface downwelling longwave flux in air
- Watt per Square Meter
- surface upwelling longwave flux in air
- Watt per Square Meter
- surface downwelling shortwave flux in air
- Watt per Square Meter
- surface upwelling shortwave flux in air
- Watt per Square Meter
- thickness of rainfall amount
- Millimetre
- relative humidity
- Percent
- specific humidity
- Kilogram per Kilogram
- soil moisture content
- Cubic Meter per Cubic Meter
- air temperature
- degree Celsius
- soil temperature
- degree Celsius
- water vapor partial pressure in air
- Kilopascal
- water vapor saturation deficit in air
- Kilopascal
- wind from direction
- Degree
- wind speed
- Meter per Second
- surface air pressure
- Kilopascal
- surface net downward radiative flux
- Watt per Square Meter
- surface upward sensible heat flux
- Watt per Square Meter
- mass concentration of water vapor in air
- Gram per Cubic Meter
- surface upward flux of available energy
- Watt per Square Meter
- magnitude of surface downward stress
- Kilograms per metre per square second
- mole fraction of water vapor in air
- Millimoles per mole
- Monin-Obukhov length
- Meter
- specific humidity saturation deficit in air
- Kilogram per Kilogram
- eastward wind
- Meter per Second
- northward wind
- Meter per Second
- vertical wind
- Meter per Second
- ecosystem respiration
- Micromoles per square metre second
- water evapotranspiration flux
- Kilograms per square metre per second
- gross primary productivity of biomass expressed as carbon
- Micromoles per square metre second
- net ecosystem exchange
- Micromoles per square metre second
- net ecosystem productivity
- Micromoles per square metre second
- surface upward mole flux of carbon dioxide
- Micromoles per square metre second
- mole fraction of carbon dioxide in air
- Micromoles per mole
- surface downwelling photosynthetic photon flux in air
- Millimoles per square metre second
- upward mole flux of carbon dioxide due inferred from storage
- Micromoles per square metre second
- surface friction velocity
- Meter per Second
- QUDT Units of Measure
-
- Milligram per Cubic Meter
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Millimetre
- Percent
- Kilogram per Kilogram
- Cubic Meter per Cubic Meter
- degree Celsius
- degree Celsius
- Kilopascal
- Kilopascal
- Degree
- Meter per Second
- Kilopascal
- Watt per Square Meter
- Watt per Square Meter
- Gram per Cubic Meter
- Watt per Square Meter
- Kilograms per metre per square second
- Millimoles per mole
- Meter
- Kilogram per Kilogram
- Meter per Second
- Meter per Second
- Meter per Second
- Micromoles per square metre second
- Kilograms per square metre per second
- Micromoles per square metre second
- Micromoles per square metre second
- Micromoles per square metre second
- Micromoles per square metre second
- Micromoles per mole
- Millimoles per square metre second
- Micromoles per square metre second
- Meter per Second
- GCMD Horizontal Resolution Ranges
- GCMD Temporal Resolution Ranges
- Keywords (Discipline)
-
- mesophyll vine forest
- AU-Ctr
Resource constraints
- Use limitation
- The Creative Commons Attribution 4.0 International (CC BY 4.0) license allows others to copy, distribute, display, and create derivative works provided that they credit the original source and any other nominated parties. Details are provided at https://creativecommons.org/licenses/by/4.0/
- File name
- 88x31.png
- File description
- CCBy Logo from creativecommons.org
- File type
- png
- Title
- Creative Commons Attribution 4.0 International Licence
- Alternate title
- CC-BY
- Edition
- 4.0
- Access constraints
- License
- Use constraints
- Other restrictions
- Other constraints
- TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure. <br /><br />Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.<br /><br />Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting
Resource constraints
- Classification
- Unclassified
Distribution Information
Distributor
Distributor
- Distribution format
-
- OnLine resource
- NetCDF files (2022_v1)
- OnLine resource
- ro-crate-metadata.json
Data quality info
- Hierarchy level
- Dataset
- Other
- If the data quality is poor, the data is filled from alternative sources. Filled data can be identified by the Quality Controls flags in the dataset. Quality control checks include (i) range checks for plausible limits, (ii) spike detection, (iii) dependency on other variables and (iv) manual rejection of date ranges. Specific checks applied to the sonic and IRGA data include rejection of points based on the sonic and IRGA diagnostic values and on either automatic gain control (AGC) or CO2 and H2O signal strength, depending upon the configuration of the IRGA. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017. <br> For further information about the software (PyFluxPro) used to process and quality control the flux data, see https://github.com/OzFlux/PyFluxPro/wiki.
Resource lineage
- Statement
- All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 .
- Hierarchy level
- Dataset
Reference System Information
- Reference system identifier
- EPSG/EPSG:4326
- Reference system type
- Geodetic Geographic 2D
Metadata
- Metadata identifier
-
urn:uuid/71872b25-2202-4699-bf5f-416fcc00a776
- Title
- TERN GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
Point of contact
- Title
- Cape Tribulation Flux Data Collection
Identifier
- Codespace
- https://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/
- Description
- Parent Metadata Record
Type of resource
- Resource scope
- Dataset
- Metadata linkage
-
https://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/71872b25-2202-4699-bf5f-416fcc00a776
Point-of-truth metadata URL
- Date info (Creation)
- 2022-03-17T00:00:00
- Date info (Revision)
- 2024-05-07T00:00:00
Metadata standard
- Title
- ISO 19115-1:2014/AMD 1:2018 Geographic information - Metadata - Fundamentals
- Edition
- 1
Metadata standard
- Title
- ISO/TS 19115-3:2016
- Edition
- 1.0
Metadata standard
- Title
- ISO/TS 19157-2:2016
- Edition
- 1.0
- Title
- Terrestrial Ecosystem Research Network (TERN) Metadata Profile of ISO 19115-3:2016 and ISO 19157-2:2016
- Date (published)
- 2021
- Edition
- 1.0