Samford Ecological Research Facility Flux Data Release 2022_v1
This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href=" https://doi.org/10.5194/bg-14-2903-2017 "> https://doi.org/10.5194/bg-14-2903-2017 </a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href=" https://github.com/OzFlux/PyFluxPro/wiki "> https://github.com/OzFlux/PyFluxPro/wiki </a>.
<br />
<br /> The Samford flux station is situated on an improved (<em>Paspalum dilatum</em>) pasture in the humid subtropical climatic region of coastal south-east Queensland. Located only 20km from the centre of Brisbane city, Samford Valley provides an ideal case study to examine the impact of urbanisation and land use change on ecosystem processes. The valley covers an area of some 82km2 and is drained in the southern regions by the Samford creek, which extends some 13km to Samford Village and into the South Pine River. The Samford Valley is historically a rural area experiencing intense urbanisation, with the population increasing almost 50% in the 10 years to 2006 (Morton Bay Regional Council, 2011). Within the Samford valley study region, the Samford Ecological Research Facility (SERF) not only represents a microcosm of current and historical land uses in the valley, but provides a unique opportunity to intensively study various aspects of ecosystem health in a secure, integrated and long term research capacity. Mean annual minimum and maximum temperatures at a nearby Bureau of Meteorology site are 13.1°C and 25.6°C respectively while average rainfall is 1102mm. <br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/samford-peri-urban-supersite/ . <br /><br />
Simple
Identification info
- Date (Creation)
- 2022-03-17
- Date (Publication)
- 2022-03-28
- Date (Revision)
- 2024-06-20
- Edition
- 1.0
Identifier
Publisher
Co-author
Author
Author
- Website
- https://www.tern.org.au/
- Purpose
- The purpose of the Samford site is to: <br /> Examine the influence of land-use change and intensification associated with peri-urban environments on soil, plant, animal and atmosphere interactions. <br /> Measure the exchange of carbon dioxide, water vapour and energy between the soil/pasture and the atmosphere of an improved pasture in response to increasing harvest intervals. <br /> Use micrometeorological techniques in conjunction with automatic GHG static closed chambers (CO2, N2O, CH4), soil moisture probe transects, stream water quality and terrestrial biomass measurements to close the carbon, water and nitrogen budgets of the improved pasture. <br /> Develop a full global warming potential analysis from this data for this land use. <br /> Examine the suitability of micrometeorological techniques in complex terrain in a sub-tropical environment
- Credit
- We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
- Credit
- The site was established around the Samford Ecological Research Facility and managed by the Queensland University of Technology (QUT). This work was jointly funded by the Terrestrial Ecosystem Research Network (TERN), an Australian Government National Collaborative Research Infrastructure Strategy (NCRIS) project, and the Queensland Government Research Infrastructure Co-investment Fund (RICF).
- Status
- Completed
Point of contact
Point of contact
- Topic category
-
- Climatology, meteorology, atmosphere
Extent
- Description
- 20km from the centre of Brisbane, Queensland
Temporal extent
- Time period
- 2010-06-02 2017-12-31
- Title
- Isaac, Peter et al., 2017. OzFlux data: network integration from collection to curation. Biogeosciences, 14(12). doi:10.5194/bg-14-2903-2017
- Website
-
Isaac, Peter et al., 2017. OzFlux data: network integration from collection to curation. Biogeosciences, 14(12). doi:10.5194/bg-14-2903-2017
Related documentation
- Title
- Beringer, Jason et al., 2016. An introduction to the Australian and New Zealand flux tower network – OzFlux. Biogeosciences, 13(21). doi:10.5194/bg-13-5895-2016
- Website
-
Beringer, Jason et al., 2016. An introduction to the Australian and New Zealand flux tower network – OzFlux. Biogeosciences, 13(21). doi:10.5194/bg-13-5895-2016
Related documentation
- Maintenance and update frequency
- Annually
- GCMD Science Keywords
-
- BIOGEOCHEMICAL PROCESSES
- LAND PRODUCTIVITY
- EVAPOTRANSPIRATION
- TERRESTRIAL ECOSYSTEMS
- ATMOSPHERIC PRESSURE MEASUREMENTS
- TURBULENCE
- WIND SPEED
- WIND DIRECTION
- TRACE GASES/TRACE SPECIES
- ATMOSPHERIC CARBON DIOXIDE
- PHOTOSYNTHETICALLY ACTIVE RADIATION
- LONGWAVE RADIATION
- SHORTWAVE RADIATION
- INCOMING SOLAR RADIATION
- HEAT FLUX
- AIR TEMPERATURE
- PRECIPITATION AMOUNT
- HUMIDITY
- SOIL MOISTURE/WATER CONTENT
- SOIL TEMPERATURE
- ANZSRC Fields of Research
- TERN Platform Vocabulary
- TERN Instrument Vocabulary
- TERN Parameter Vocabulary
-
- air temperature
- degree Celsius
- downward heat flux at ground level in soil
- Watt per Square Meter
- ecosystem respiration
- Micromoles per square metre second
- gross primary productivity of biomass expressed as carbon
- Micromoles per square metre second
- magnitude of surface downward stress
- Kilograms per metre per square second
- mass concentration of carbon dioxide in air
- Milligram per Cubic Meter
- mass concentration of water vapor in air
- Gram per Cubic Meter
- mole fraction of water vapor in air
- Millimoles per mole
- Monin-Obukhov length
- Meter
- net ecosystem exchange
- Micromoles per square metre second
- net ecosystem productivity
- Micromoles per square metre second
- relative humidity
- Percent
- soil temperature
- degree Celsius
- specific humidity
- Kilogram per Kilogram
- specific humidity saturation deficit in air
- Kilogram per Kilogram
- surface air pressure
- Kilopascal
- surface downwelling longwave flux in air
- Watt per Square Meter
- surface downwelling shortwave flux in air
- Watt per Square Meter
- surface friction velocity
- Meter per Second
- surface net downward radiative flux
- Watt per Square Meter
- surface upward flux of available energy
- Watt per Square Meter
- surface upward latent heat flux
- Watt per Square Meter
- surface upward mole flux of carbon dioxide
- Micromoles per square metre second
- surface upward sensible heat flux
- Watt per Square Meter
- surface upwelling longwave flux in air
- Watt per Square Meter
- surface upwelling shortwave flux in air
- Watt per Square Meter
- thickness of rainfall amount
- Millimetre
- upward mole flux of carbon dioxide due inferred from storage
- Micromoles per square metre second
- volume fraction of condensed water in soil
- Cubic Meter per Cubic Meter
- water evapotranspiration flux
- Kilograms per square metre per second
- water vapor partial pressure in air
- Kilopascal
- water vapor saturation deficit in air
- Kilopascal
- wind from direction
- Degree
- wind speed
- Meter per Second
- QUDT Units of Measure
-
- degree Celsius
- Watt per Square Meter
- Micromoles per square metre second
- Micromoles per square metre second
- Kilograms per metre per square second
- Milligram per Cubic Meter
- Gram per Cubic Meter
- Millimoles per mole
- Meter
- Micromoles per square metre second
- Micromoles per square metre second
- Percent
- degree Celsius
- Kilogram per Kilogram
- Kilogram per Kilogram
- Kilopascal
- Watt per Square Meter
- Watt per Square Meter
- Meter per Second
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Micromoles per square metre second
- Watt per Square Meter
- Watt per Square Meter
- Watt per Square Meter
- Millimetre
- Micromoles per square metre second
- Cubic Meter per Cubic Meter
- Kilograms per square metre per second
- Kilopascal
- Kilopascal
- Degree
- Meter per Second
- GCMD Horizontal Resolution Ranges
- GCMD Temporal Resolution Ranges
- Keywords (Discipline)
-
- eddy covariance
- pasture
- AU-Sam
Resource constraints
- Use limitation
- The Creative Commons Attribution 4.0 International (CC BY 4.0) license allows others to copy, distribute, display, and create derivative works provided that they credit the original source and any other nominated parties. Details are provided at https://creativecommons.org/licenses/by/4.0/
- File name
- 88x31.png
- File description
- CCBy Logo from creativecommons.org
- File type
- png
- Title
- Creative Commons Attribution 4.0 International Licence
- Alternate title
- CC-BY
- Edition
- 4.0
- Access constraints
- License
- Use constraints
- Other restrictions
- Other constraints
- TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure. <br /><br />Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.<br /><br />Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting
Resource constraints
- Classification
- Unclassified
Distribution Information
Distributor
Distributor
- Distribution format
-
- OnLine resource
- NetCDF files (2022_v1)
- OnLine resource
- ro-crate-metadata.json
Data quality info
- Hierarchy level
- Dataset
- Other
- If the data quality is poor, the data is filled from alternative sources. Filled data can be identified by the Quality Controls flags in the dataset. Quality control checks include (i) range checks for plausible limits, (ii) spike detection, (iii) dependency on other variables and (iv) manual rejection of date ranges. Specific checks applied to the sonic and IRGA data include rejection of points based on the sonic and IRGA diagnostic values and on either automatic gain control (AGC) or CO2 and H2O signal strength, depending upon the configuration of the IRGA. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017. For further information about the software (PyFluxPro) used to process and quality control the flux data, see https://github.com/OzFlux/PyFluxPro/wiki .
Resource lineage
- Statement
- All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 .
- Hierarchy level
- Dataset
Reference System Information
- Reference system identifier
- EPSG/EPSG:4326
- Reference system type
- Geodetic Geographic 2D
Metadata
- Metadata identifier
-
urn:uuid/355ba103-d492-4803-b337-65f33b9b12a0
- Title
- TERN GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
Point of contact
Type of resource
- Resource scope
- Dataset
- Metadata linkage
-
https://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/355ba103-d492-4803-b337-65f33b9b12a0
Point-of-truth metadata URL
- Date info (Creation)
- 2022-03-17T00:00:00
- Date info (Revision)
- 2024-06-20T00:00:00
Metadata standard
- Title
- ISO 19115-1:2014/AMD 1:2018 Geographic information - Metadata - Fundamentals
- Edition
- 1
Metadata standard
- Title
- ISO/TS 19115-3:2016
- Edition
- 1.0
Metadata standard
- Title
- ISO/TS 19157-2:2016
- Edition
- 1.0
- Title
- Terrestrial Ecosystem Research Network (TERN) Metadata Profile of ISO 19115-3:2016 and ISO 19157-2:2016
- Date (published)
- 2021
- Edition
- 1.0