From 1 - 7 / 7
  • Categories    

    This dataset contains spatial layers describing Forest Loss and Recovery from 1998-2019 in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> For this dataset product and the processing of metrics, aspects of canopy loss and disturbances in the forest estate were investigated. Measures of canopy loss and recovery are seen as one of the multiple indicators of forest health. This is related to agents or pressures that affect the capacity of native forests and commercial operations to maintain normal ecosystem functions and sustainably provide productive capacity. <br> To attribute disturbances, as a driver of change, a Multiple Lines of Evidence (MLE) approach was used that leveraged available spatial datasets. This allowed for a project-wide disturbance and disturbance context layer to be generated. This information can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest loss can be potentially assigned or at the very least investigated. <br> The time taken, in terms of years, for areas to recover from losses in forest cover extent can has also been determined. This process identifies the time taken for a patch of forest to return to a 20% canopy cover threshold, and other characteristics such as the forest type and likely disturbance or loss event. <br> Forest Loss and Recovery uses measures of canopy loss and disturbances which can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest loss can be potentially assigned or at the very least investigated. Time taken in years for areas to recover for losses has also been determined, as-well as other characteristics such as forest type and likely disturbance/loss event. <br> Base cover extent grids used are from the NSW RFA Historic Forest Cover Extent – 1995 to 2019 product.

  • Categories    

    This dataset contains a series of spatial outputs describing probabilistic species predictive occupancy (Species Occupancy Models, or SOM) & habitat suitability (Maximum Entropy, or Maxent) surfaces, the underlying data used to calculate these models & model projections predicting the impact of climate change on flora Maxent surfaces. <br> Model outputs are combination outputs dependent on known species occurrence in the landscape, the species relationship with environmental variables (covariates) such as temperature, rainfall and topography; and its predicted occurrence based on covariate analysis. Maxent models do not predict actual occupancy, but rather habitat suitability, while SOMs predict actual occupancy. confounding factors such as inter-species competition, geographical barriers and disturbance events play a significant role in species occurrence, and are not considered in Maxent or SOM. Flora Maxent climate change projections used NSW and Australian Regional Climate Modelling (NARCliM) variables to predict habitat suitability for a baseline year 2000 and projections for 2030 and 2070. <br> Covariates, Fauna & Flora survey records used to create the models are included. <br> More detailed information regarding each model, its processes and outputs are included in the dataset.

  • Categories    

    This dataset contains spatial layers describing Forest Connectivity from 1995-2019, in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. Forest Connectivity accounts for the general quality of terrestrial habitats supporting biodiversity at each location, the fragmentation of habitat within its neighbourhood and how its position in the landscape contributes to connectivity among the habitats across a region. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> Forest Connectivity, including canopy cover connectivity and fragmentation is concerned and linked to forest condition. Concepts applied are to be aligned with definitions as found in the NSW Biodiversity Indicator Program (BIP) and the Spatial Links methodology for calculating connectivity.<br> Base cover extent grids used are from the NSW RFA Historic Forest Cover Extent – 1995 to 2019 product.

  • Categories    

    This dataset contains spatial layers describing Forest Extent from 1995-2019 in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. Forest Extent is the likelihood that a certain area has forest at any given time. Forest is defined in accordance with the National State of the Forests Report which defines forests as containing as a minimum, a mature or potentially mature stand height exceeding 2 metres, stands dominated by trees usually having a single stem, where the mature or potentially mature stand component comprises 20% canopy coverage using a Crown Projective Cover (CPC) measure. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> To calculate forest extent, these base grids have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage.

  • Categories    

    Data is provided for fifteen native forest plots in NSW measured in April 2021 during a pilot of potential field measurement methods for the state-wide forest plot network as part of the NSW Forest Monitoring and Improvement Program. Data includes tree height, diameter, canopy cover, species composition, coarse woody debris, fuel hazard, Biodiversity Assessment Method structure, as well as raw and processed data from terrestrial LiDAR scans.

  • Categories    

    The NSW Carbon Monitoring project is a collaboration between the Natural Resources Commission of NSW and Mullion Group to develop a spatial time-series dataset of forest carbon history for the state of NSW at ~25m resolution. The project used FLINTpro software to integrate historical environmental and land management data to model carbon stock and fluxes. Aboveground biomass refers to the amount of carbon stored within aboveground forest components (pools) which includes leaves, branches, bark and stems. Belowground biomass refers to the amount of carbon stored within belowground forest components (pools) which includes coarse and fine roots. Dead Organic Matter refers to the amount of carbon stored within dead forest components (pools) which includes leaf litter, branch litter, bark litter, stem litter, and dead roots. Carbon stored within soil and harvested wood products is not included within any of these datasets.

  • Categories    

    These datasets consist of soil maps generated to assess baselines, drivers and trends for soil health and stability within the NSW Regional Forest Agreement (RFA) regions. <br> The maps are organised into empirical soil maps, digital soil maps, and data cube maps. <br> Empirical soil maps consists of four products. Maps include topsoil pH, carbon, Emerson Aggregate Stability and Soil Profile Quality Confidence. Each map consists of 2,162 units. Maps were generated using the most representative soil profile for each unit available within the Soil and Land Information System (SALIS). The 2008 woody vegetation coverage was used as baseline. Maps reflect values when the sampling occurred with temporal changes not being accounted for. Locations with missing or of poor quality data are identified, providing a confidence rating map as part of the evaluation process.<br> Digital soil maps include map products of key soil condition indicators covering the Regional Forest Agreement regions of eastern NSW. Raster maps of key soil indicators, such as soil carbon, pH, bulk density, hillslope erosion and others, were created at 100 m resolution. For each key soil indicator, maps include baseline (approximately 2008) levels as well as trends of change resulting from different human and natural disturbances such as forest harvesting, uncontrolled stock grazing, climate change and bush fire. <br> Data cube maps include time series of soil organic carbon (SOC) between January 1990 and December 2020 for the Regional Forest Agreement regions of eastern NSW. Products provide estimates of SOC concentrations and associated trends through time. Modelling was carried out using a data cube platform incorporating machine learning space-time framework and geospatial technologies. Important covariates required to drive this spatio-temporal modelling were identified using the Recursive Feature Elimination algorithm (RFE). <br>