From 1 - 10 / 11
  • Categories    

    This dataset contains spatial layers describing Forest Loss and Recovery from 1998-2020 in NSW. For this dataset product and the processing of metrics, aspects of canopy loss and disturbances in the forest estate were investigated. Measures of canopy loss and recovery are seen as one of the multiple indicators of forest health. This is related to agents or pressures that affect the capacity of native forests and commercial operations to maintain normal ecosystem functions and sustainably provide productive capacity. <br> To attribute disturbances, as a driver of change, a Multiple Lines of Evidence (MLE) approach was used that leveraged available spatial datasets. This allowed for a project-wide disturbance and disturbance context layer to be generated. This information can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest loss can be potentially assigned or at the very least investigated. <br> The time taken, in terms of years, for areas to recover from losses in forest cover extent can has also been determined. This process identifies the time taken for a patch of forest to return to a 20% canopy cover threshold, and other characteristics such as the forest type and likely disturbance or loss event.<br> Base cover extent grids used are from the NSW State-wide Historic Forest Cover Extent – 1995 to 2020 product. These have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage. <br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset supersedes "NSW Forest Monitoring and Improvement Program RFA Historic Forest Loss and Recovery – 1998 to 2019".

  • Categories    

    This dataset contains spatial layers describing Forest Canopy Extent from 1995-2019 in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. Forest Canopy Extent is the likelihood that a certain area has forest at any given time. Forest Canopy is defined in accordance with the National State of the Forests Report which defines forests as containing as a minimum, a mature or potentially mature stand height exceeding 2 metres, stands dominated by trees usually having a single stem, where the mature or potentially mature stand component comprises 20% canopy coverage using a Crown Projective Cover (CPC) measure. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> To calculate forest canopy extent, these base grids have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage.<br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset is superseded by 'NSW Forest Monitoring and Improvement Program State-Wide Historic Forest Canopy Cover Extent - 1995 to 2020'

  • Categories    

    The spatial layers in this dataset detail forest connectivity over NSW. Forest Connectivity accounts for the general quality of terrestrial habitats supporting biodiversity at each location, the fragmentation of habitat within its neighbourhood and how its position in the landscape contributes to connectivity among the habitats across a region. <br> Forest canopy cover connectivity and fragmentation is concerned and linked to forest condition. Concepts applied are to be aligned with definitions as found in the Biodiversity Indicator Program (BIP) and the Spatial Links methodology for calculating connectivity. <br> Base cover extent grids used are from the NSW Forest Monitoring and Improvement Program Statewide Historic Forest Cover Extent – 1995 to 2020 product. These have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage.<br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset supersedes "NSW Forest Monitoring and Improvement Program RFA Historic Forest Connectivity – 1995 to 2019". https://portal.tern.org.au/metadata/23696.

  • Categories    

    The NSW Forest Monitoring Steering Committee commissioned the University of Melbourne to deliver baselines, drivers and trends for water quality and quantity in the NSW Regional Forest Agreement (RFA) regions. Following this work, the University of Melbourne was asked to extend the analysis to cover all NSW forested catchments. Both the initial project (RFA regions) and the extension (all NSW forested catchments) are included in this publication.<br> This dataset contains the estimated Mann-Kendall trends (direction and significance) in seven water quality and six water quantity indicators. The trends were estimated using a temporal regression that included a linear trend, the flow effect, a seasonality component and a lag-1 autoregressive residual model for which water quality data were sampled at daily or higher frequencies. For each water quality variable, trends were estimated for catchments which have 50% catchment area covered by forest, and long-term data monitored at the outlet of each catchment. All trends were estimated with the full historical records of each variable at each catchment in RFA regions, and the extension across all NSW forested catchments also produced short term trends. More detailed metadata for each dataset is included.<br> The seven quality indicators are: total phosphorus (TP), total nitrogen (TN), dissolved oxygen (DO), pH, electrical conductivity (EC), turbidity and water temperature (WTemp). <br> The six quantity indicators are: annual flow, annual rainfall-runoff residual, annual high flow, annual low flow, annual 7-day (7d) low flow and annual cease to flow (CTF).<br> Water monitoring sites analysed included those from the WaterNSW, Bureau of Meteorology, Water Data Online (BoM WDO) and Forestry Corporation NSW (FCNSW).<br> A web mapping application on the NSW Spatial Collaboration Portal depicts these datasets. Access the webapp through the link below: <br> https://portal.spatial.nsw.gov.au/portal/home/item.html?id=03950cf226ac4d459b8c8e3631e17afb

  • Categories    

    The spatial layers in this dataset detail forest cover extent over NSW. They have been created for the NSW Natural Resources Commission to detail historic baseline and trends of forest cover extent coverage for NSW for all land tenures, including all RFAs and IFOAs. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2021). These base grids are Landsat in origin and have a resolution of 25m. <br> These base grids have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage. <br> These grids cover the years from 1995 to 2020. The year gaps are triennial or biennial data layers from 1995 to 2004. 1996,1997,1999,2001,2003 years missing as these were not assessed in original applied database. From 2004 to 2020 data layers become annualised.<br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset supersedes "NSW Forest Monitoring and Improvement Program RFA Historic Forest Cover Extent – 1995 to 2019". https://portal.tern.org.au/metadata/23696.

  • Categories    

    This dataset contains spatial layers describing Forest Connectivity from 1995-2019, in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. Forest Connectivity accounts for the general quality of terrestrial habitats supporting biodiversity at each location, the fragmentation of habitat within its neighbourhood and how its position in the landscape contributes to connectivity among the habitats across a region. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> Forest Connectivity, including canopy cover connectivity and fragmentation is concerned and linked to forest condition. Concepts applied are to be aligned with definitions as found in the NSW Biodiversity Indicator Program (BIP) and the Spatial Links methodology for calculating connectivity.<br> Base cover extent grids used are from the NSW RFA Historic Forest Canopy Cover Extent – 1995 to 2019 product. <br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset is superseded by 'NSW Forest Monitoring and Improvement Program State-Wide Historic Forest Connectivity - 1995 to 2020'

  • Categories    

    This dataset contains a series of spatial outputs describing probabilistic species predictive occupancy (Species Occupancy Models, or SOM) & habitat suitability (Maximum Entropy, or Maxent) surfaces, the underlying data used to calculate these models & model projections predicting the impact of climate change on flora Maxent surfaces. <br> Model outputs are combination outputs dependent on known species occurrence in the landscape, the species relationship with environmental variables (covariates) such as temperature, rainfall and topography; and its predicted occurrence based on covariate analysis. Maxent models do not predict actual occupancy, but rather habitat suitability, while SOMs predict actual occupancy. confounding factors such as inter-species competition, geographical barriers and disturbance events play a significant role in species occurrence, and are not considered in Maxent or SOM. Flora Maxent climate change projections used NSW and Australian Regional Climate Modelling (NARCliM) variables to predict habitat suitability for a baseline year 2000 and projections for 2030 and 2070. <br> Covariates, Fauna & Flora survey records used to create the models are included. <br> More detailed information regarding each model, its processes and outputs are included in the dataset. <br> A web mapping application on the NSW Spatial Collaboration Portal depicts Maxent & SOM of a selected group of vulnerable Flora & Fauna from this dataset. Access the webapp through the link below: <br> https://portal.spatial.nsw.gov.au/portal/home/item.html?id=78e6ae3d34aa45d2b8118fd0308d6459

  • Categories    

    This dataset contains spatial layers describing Forest Canopy Loss and Recovery from 1998-2019 in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> For this dataset product and the processing of metrics, aspects of canopy loss and disturbances in the forest estate were investigated. Measures of canopy loss and recovery are seen as one of the multiple indicators of forest health. This is related to agents or pressures that affect the capacity of native forests and commercial operations to maintain normal ecosystem functions and sustainably provide productive capacity. <br> To attribute disturbances, as a driver of change, a Multiple Lines of Evidence (MLE) approach was used that leveraged available spatial datasets. This allowed for a project-wide disturbance and disturbance context layer to be generated. This information can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest loss can be potentially assigned or at the very least investigated. <br> The time taken, in terms of years, for areas to recover from losses in forest canopy cover extent can has also been determined. This process identifies the time taken for a patch of forest to return to a 20% canopy cover threshold, and other characteristics such as the forest type and likely disturbance or loss event. <br> Forest Canopy Loss and Recovery uses measures of canopy loss and disturbances which can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest canopy loss can be potentially assigned or at the very least investigated. Time taken in years for areas to recover for losses has also been determined, as-well as other characteristics such as forest type and likely disturbance/loss event. <br> Base cover extent grids used are from the NSW RFA Historic Forest Canopy Cover Extent – 1995 to 2019 product. Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset is superseded by 'NSW Forest Monitoring and Improvement Program State-Wide Historic Forest Canopy Loss and Recovery - 1998 to 2020'

  • Categories    

    Data is provided for fifteen native forest plots in NSW measured in April 2021 during a pilot of potential field measurement methods for the state-wide forest plot network as part of the NSW Forest Monitoring and Improvement Program. Data includes tree height, diameter, canopy cover, species composition, coarse woody debris, fuel hazard, Biodiversity Assessment Method structure, as well as raw and processed data from terrestrial LiDAR scans.

  • Categories    

    The NSW Carbon Monitoring project is a collaboration between the Natural Resources Commission of NSW and Mullion Group to develop a spatial time-series dataset of forest carbon history for the state of NSW at ~25m resolution. The project used FLINTpro software to integrate historical environmental and land management data to model carbon stock and fluxes. Aboveground biomass refers to the amount of carbon stored within aboveground forest components (pools) which includes leaves, branches, bark and stems. Belowground biomass refers to the amount of carbon stored within belowground forest components (pools) which includes coarse and fine roots. Dead Organic Matter refers to the amount of carbon stored within dead forest components (pools) which includes leaf litter, branch litter, bark litter, stem litter, and dead roots. Carbon stored within soil and harvested wood products is not included within any of these datasets.