From 1 - 10 / 35
  • Categories    

    <p>This dataset provides accurate, high-resolution (30 m) / high-frequency (monthly) / continuous (no gaps due to cloud) actual evapotranspiration (AET) for Australia using the CMRSET algorithm. The CMRSET algorithm uses reflective remotely sensed indices to estimate AET from potential evapotranspiration (PET; calculated using daily gridded meteorological data generated by the Bureau of Meteorology). Blending high-resolution / low-frequency AET estimates (e.g., Landsat and Sentinel-2) with low-resolution / high-frequency AET estimates (e.g., MODIS and VIIRS) results in AET data that are high-resolution / high-frequency / continuous (no gaps due to cloud) and accurate. These are all ideal characteristics when calculating the water balance for a wetland, paddock, river reach, irrigation area, landscape or catchment. </p><p> Accurate AET information is important for irrigation, food security and environmental management. Like many other parts of the world, water availability in Australia is limited and AET is the largest consumptive component of the water balance. In Australia 70% of available water is used for crop and pasture irrigation and better monitoring will support improved water use efficiency in this sector, with any water savings available as environmental flows. Additionally, ground-water dependent ecosystems (GDE) occupy a small area yet are "biodiversity hotspots", and knowing their water needs allows for enhanced management of these critical areas in the landscape. Having high-resolution, frequent and accurate AET estimates for all of Australia means this AET data source can be used to model the water balance for any catchment / groundwater system in Australia. </p><p> Details of the CMRSET algorithm and its independent validation are provided in Guerschman, J.P., McVicar, T.R., Vleeshouwer, J., Van Niel, T.G., Peña-Arancibia, J.L. and Chen, Y. (2022) Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. Journal of Hydrology. 605, 127318, doi:10.1016/j.jhydrol.2021.127318</p> <p> <i>We strongly recommend users to use the TERN CMRSET AET V2.2</i>. Details of the TERN CMRSET AET V2.2 data product generation are provided in McVicar, T.R., Vleeshouwer, J., Van Niel, T.G., Guerschman, J.P., Peña-Arancibia, J.L. and Stenson, M.P. (2022) Generating a multi-decade gap-free high-resolution monthly actual evapotranspiration dataset for Australia using Landsat, MODIS and VIIRS data in the Google Earth Engine platform: Development and use cases. Journal of Hydrology (In Preparation).

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /><br /> The Great Western Woodlands (GWW) comprise a 16 million hectare mosaic of temperate woodland, shrubland and mallee vegetation in south-west Western Australia. The region has remained relatively intact since European settlement, owing to the variable rainfall and lack of readily accessible groundwater. The woodland component is globally unique in that nowhere else do woodlands occur at as little as 220 mm mean annual rainfall. Further, other temperate woodlands around the world have typically become highly fragmented and degraded through agricultural use. The Great Western Woodlands Site was established in 2012 in the Credo Conservation Reserve. The site is in semi-arid woodland and was operated as a pastoral lease from 1907 to 2007. The core 1 ha plot is characterised by <em>Eucalyptus salmonophloia</em> (salmon gum), with <em>Eucalyptus salubris</em> and <em>Eucalyptus clelandii</em> dominating other research plots. The flux station is located in Salmon gum woodland. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/great-western-woodlands-supersite/ . <br /><br />

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in temperate eucalypt woodland using eddy covariance techniques. <br /><br /> The Great Western Woodlands (GWW) comprise a 16 million hectare mosaic of temperate woodland, shrubland and mallee vegetation in south-west Western Australia. The region has remained relatively intact since European settlement, owing to the variable rainfall and lack of readily accessible groundwater. The woodland component is globally unique in that nowhere else do woodlands occur at as little as 220 mm mean annual rainfall. Further, other temperate woodlands around the world have typically become highly fragmented and degraded through agricultural use. The Great Western Woodlands Site was established in 2012 in the Credo Conservation Reserve. The site is in semi-arid woodland and was operated as a pastoral lease from 1907 to 2007. The core 1 ha plot is characterised by <em>Eucalyptus salmonophloia</em> (salmon gum), with <em>Eucalyptus salubris</em> and <em>Eucalyptus clelandii</em> dominating other research plots. The flux station is located in Salmon gum woodland. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/great-western-woodlands-supersite/ . <br /><br />This data is also available at http://data.ozflux.org.au .

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /><br /> The Great Western Woodlands (GWW) comprise a 16 million hectare mosaic of temperate woodland, shrubland and mallee vegetation in south-west Western Australia. The region has remained relatively intact since European settlement, owing to the variable rainfall and lack of readily accessible groundwater. The woodland component is globally unique in that nowhere else do woodlands occur at as little as 220 mm mean annual rainfall. Further, other temperate woodlands around the world have typically become highly fragmented and degraded through agricultural use. The Great Western Woodlands Site was established in 2012 in the Credo Conservation Reserve. The site is in semi-arid woodland and was operated as a pastoral lease from 1907 to 2007. The core 1 ha plot is characterised by <em>Eucalyptus salmonophloia</em> (salmon gum), with <em>Eucalyptus salubris</em> and <em>Eucalyptus clelandii</em> dominating other research plots. The flux station is located in Salmon gum woodland. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/great-western-woodlands-supersite/ . <br /><br />

  • Categories    

    This data contains diameter, volume and biomass measurements of all coarse woody debris pieces within the core 1 ha plot at the Robson Creek Rainforest site in 2012 - 2014 and 2017.

  • Categories    

    This dataset consists of images of fauna, flora, fungi or general scenery or events captured at the site on an ad-hoc basis and may provide the researcher with information regarding the species that occupy, frequent or traverse this site.<br /> <br /> The Tumbarumba Flux site was established in 2000 and started measuring in 2001. The 1 hectare (ha) SuperSite plot was established in 2015. Preliminary images have been captured since 2000 using various sampling strategies and protocols. The overstorey is dominated by <em>Eucalyptus delegatensis</em> and <em>Eucalyptus dalrympleana</em>. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/tumbarumba-wet-eucalypt-supersite/ .<br /><br /> Other images collected at the site include digital cover photography, phenocam time-lapse images taken from fixed under and overstorey cameras, and photopoints. <br /><br /> <iframe src="https://maps.google.com/maps?layer=c&amp;panoid=M8Y1wzLaKZkAAAQfCUGTcg&amp;ie=UTF8&amp;source=embed&amp;output=svembed&amp;cbp=13%2C256.70292604843684%2C%2C0%2C-24.374810904891447" title="Tumbarumba Wet Eucalypt SuperSite - Winter 2014" style="height:248px;width:462px;"></iframe> <br />Tumbarumba Wet Eucalypt SuperSite - Winter 2014<br />

  • Categories    

    <p>Digital Cover Photography (DCP) upward-looking images are collected up to twice per year to capture vegetation cover at Tumbarumba Wet Eucalypt SuperSite. These images can be used to estimate Leaf area index (LAI), Crown Cover or Foliage Projective Cover (FPC). </p><p> The Tumbarumba Flux site was established in 2000 and started measuring in 2001. The 1 hectare (ha) SuperSite plot was established in 2015. Preliminary images have been captured since 2000 using various sampling strategies and protocols. Since 2015 the 1 ha Supersite has had a consistent DCP protocol implemented twice per year. The overstorey is dominated by <em>Eucalyptus delegatensis</em> and <em>Eucalyptus dalrympleana</em>. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/tumbarumba-wet-eucalypt-supersite/ .</p><p> Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed under and overstorey cameras, and ancillary images of fauna and flora. </p>

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Otway flux station was located at Narrinda South in south west Victoria, Australia.The pasture was grazed by dairy cattle with average grass height of 0.1m. Annual average rainfall at the site was around 800mm and was only moderately seasonal. Mean daily temperature ranged from 25°C in February to 12°C in July. The flux station was situated on a 10m tower. Fluxes of heat, water vapour and carbon dioxide were measured using the open-path eddy covariance technique. Supplementary measurements included temperature, humidity, rainfall, total solar, photosynthetically active radiation (PAR) and net radiation. Soil temperature and heat flux were also measured. The Otway flux station was established in February 2007 on private land at Nirranda South and managed by CSIRO Marine and Atmospheric Research staff as part of the Cooperative Research Centre for Greenhouse Gas Technologies.<br />For additional site information, see http://www.ozflux.org.au/monitoringsites/otway/index.html . <br><br>

  • Categories    

    <p>Fixed cameras installed at the Tumbarumba Wet Eucalypt SuperSite provide a time series of fine scale data as a long-term record of vegetation structure and condition. This dense time series of phenocam images provides data for analysis of ecological responses to climate variability, and when consolidated across the entire terrestrial ecosystem research network, supports calibration and validation of satellite-derived remote sensing data, ensuring delivery of higher quality results for broader scale environmental monitoring products.</p> <p>Images are captured regularly during daylight hours. Images and data products for a region-of-interest (ROI) that delineates an area of specific vegetation type, are made available on a six monthly basis.</p> <p>The Tumbarumba Flux site was established in 2000 by CSIRO and started measurements in 2001. The 1 hectare (ha) SuperSite plot was established in 2015 in a collaboration with TERN. The overstorey is dominated by <em>Eucalyptus delegatensis</em> (alpine ash) and <em>Eucalyptus dalrympleana</em> (mountain gum). For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/tumbarumba-wet-eucalypt-supersite/ . </p> <p>Other images collected at the site include photopoints, digital cover photography (DCP), and ancillary images of fauna and flora. </p>

  • Categories    

    This collection contains the data used in the Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) software tool. From the Data menu, explore and download individual supplementary layers, or download the entire datapack. The Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) is a software tool developed by the Australian Bureau of Agricultural and Resource Economics and Sciences that enables multi-criteria analysis (MCA) using spatial data. It is a powerful, easy-to-use and flexible decision-support tool that promotes: - framework for assessing options <br> - common metric for classifying, ranking and weighting of the data <br> - tools to compare, combine and explore spatial data <br> - live-update of alternative scenarios and trade-offs. <br>