From 1 - 10 / 13
  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>.<br /> <br /> The Gingin site was established in June 2011 by CSIRO and is now managed by Edith Cowan University Centre for Ecosystem Management. The site is a natural woodland of high species diversity. The overstorey is dominated by Banksia spp. mainly B. menziesii, B. attenuata, and B. grandis with a height of around 7m and leaf area index of about 0.8. There are occasional stands of eucalypts and acacia that reach to 10m and have a denser foliage cover. There are many former wetlands dotted around the woodland, most of which were inundated all winter and some had permanent water 30 years ago. The watertable has now fallen below the base of these systems and they are disconnected and are no longer permanently wet. The fine sediments, sometimes diatomaceous, hold water and they have perched watertables each winter. There is a natural progression of species accompanying this process as they gradually become more dominated by more xeric species. The soils are mainly Podosol sands, with low moisture holding capacity. Field capacity typically about 8 to 10%, and in summer these generally hold less than 2% moisture. The water tabl is at about 8.5 m below the surface, and a WA Dept of water long-term monitoring piezometer is near the base of the tower. The instrument mast is 14m tall, with the eddy covariance instruments mounted at 14.8m. Fluxes of carbon dioxide, water vapour and heat are quantified with open-path eddy covariance instrumentation. Ancillary measurements include temperature, air humidity, wind speed and direction, precipitation, incoming and outgoing shortwave radiation, incoming and outgoing long wave radiation, incoming total and diffuse PAR and reflected PAR. Soil water content and temperature are measured at six soil depths. Surface soil heat fluxes are also measured. A COSMOS Cosmic ray soil moisture instrument is installed, along with a logged piezometer, and nested piezometers installed with short screens for groundwater profile sampling. To monitor the watertable gradient, piezometers will be installed 500 m esat and west of the tower. <br/> For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/gingin-banksia-woodland-supersite/. <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>.<br /> <br /> The Gingin site was established in June 2011 by CSIRO and is now managed by Edith Cowan University Centre for Ecosystem Management. The site is a natural woodland of high species diversity. The overstorey is dominated by Banksia spp. mainly B. menziesii, B. attenuata, and B. grandis with a height of around 7m and leaf area index of about 0.8. There are occasional stands of eucalypts and acacia that reach to 10m and have a denser foliage cover. There are many former wetlands dotted around the woodland, most of which were inundated all winter and some had permanent water 30 years ago. The watertable has now fallen below the base of these systems and they are disconnected and are no longer permanently wet. The fine sediments, sometimes diatomaceous, hold water and they have perched watertables each winter. There is a natural progression of species accompanying this process as they gradually become more dominated by more xeric species. The soils are mainly Podosol sands, with low moisture holding capacity. Field capacity typically about 8 to 10%, and in summer these generally hold less than 2% moisture. The water tabl is at about 8.5 m below the surface, and a WA Dept of water long-term monitoring piezometer is near the base of the tower. The instrument mast is 14m tall, with the eddy covariance instruments mounted at 14.8m. Fluxes of carbon dioxide, water vapour and heat are quantified with open-path eddy covariance instrumentation. Ancillary measurements include temperature, air humidity, wind speed and direction, precipitation, incoming and outgoing shortwave radiation, incoming and outgoing long wave radiation, incoming total and diffuse PAR and reflected PAR. Soil water content and temperature are measured at six soil depths. Surface soil heat fluxes are also measured. A COSMOS Cosmic ray soil moisture instrument is installed, along with a logged piezometer, and nested piezometers installed with short screens for groundwater profile sampling. To monitor the watertable gradient, piezometers will be installed 500 m esat and west of the tower. <br/> For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/gingin-banksia-woodland-supersite/. <br /><br />

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in dry sclerophyll forest using eddy covariance techniques.<br /><br /> The Wombat State Forest site is a secondary re-growth forest that was last harvested in 1980. Dominant tree species are <em>Eucalyptus obliqua</em> (messmate stringybark), <em>Eucalyptus radiata</em> (narrow leaf peppermint) and <em>Eucalyptus rubida</em> (candlebark) with an average canopy height of 25m. The understorey consists mainly of patchy grasses and the soil is a silty-clay overlying clay. The forest is managed by the Department of Sustainability and Environment and management includes selective harvesting and prescribed burning regimes. The climate of the study area is classified as cool-temperate to Mediterranean zone with cold and wet winters (May-Aug) and warm and dry summers (Dec-Feb) with a temperature range: 1-30 °C and mean annual air temperature (2001-2012): 12.1°C. Annual rainfall is approximately 871 mm (142 year long-term average). Coherent automated measurements of soil greenhouse gas fluxes (CO2, CH4 and N2O) were collected using a trailer-mounted mobile laboratory – Fourier transform infra-red (FTIR) spectrometer from 2010 to 2016. Measurement height was 30m but increased to 33m from January 2017<br /><br />This data is also available at http://data.ozflux.org.au .

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.4.7) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Wombat State Forest site is a secondary re-growth forest that was last harvested in 1980. Dominant tree species are <em>Eucalyptus obliqua</em> (messmate stringybark), <em>Eucalyptus radiata</em> (narrow leaf peppermint) and <em>Eucalyptus rubida</em> (candlebark) with an average canopy height of 25m. The understorey consists mainly of patchy grasses and the soil is a silty-clay overlying clay. The forest is managed by the Department of Sustainability and Environment and management includes selective harvesting and prescribed burning regimes. The climate of the study area is classified as cool-temperate to Mediterranean zone with cold and wet winters (May-Aug) and warm and dry summers (Dec-Feb) with a temperature range: 1-30 °C and mean annual air temperature (2001-2012): 12.1°C. Annual rainfall is approximately 871 mm (142 year long-term average). Coherent automated measurements of soil greenhouse gas fluxes (CO2, CH4 and N2O) were collected using a trailer-mounted mobile laboratory – Fourier transform infra-red (FTIR) spectrometer from 2010 to 2016. Measurement height was 30m but increased to 33m from January 2017<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330 m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9°C (in Jan) to 15.4°C (in July), while minimum temperatures range from 5.5°C (in July) to 16.0 °C (in Feb).<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.4.7) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330 m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9°C (in Jan) to 15.4°C (in July), while minimum temperatures range from 5.5°C (in July) to 16.0 °C (in Feb).<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.4.7) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>.<br /> <br /> The Gingin site was established in June 2011 by CSIRO and is now managed by Edith Cowan University Centre for Ecosystem Management. The site is a natural woodland of high species diversity. The overstorey is dominated by Banksia spp. mainly B. menziesii, B. attenuata, and B. grandis with a height of around 7m and leaf area index of about 0.8. There are occasional stands of eucalypts and acacia that reach to 10m and have a denser foliage cover. There are many former wetlands dotted around the woodland, most of which were inundated all winter and some had permanent water 30 years ago. The watertable has now fallen below the base of these systems and they are disconnected and are no longer permanently wet. The fine sediments, sometimes diatomaceous, hold water and they have perched watertables each winter. There is a natural progression of species accompanying this process as they gradually become more dominated by more xeric species. The soils are mainly Podosol sands, with low moisture holding capacity. Field capacity typically about 8 to 10%, and in summer these generally hold less than 2% moisture. The water tabl is at about 8.5 m below the surface, and a WA Dept of water long-term monitoring piezometer is near the base of the tower. The instrument mast is 14m tall, with the eddy covariance instruments mounted at 14.8m. Fluxes of carbon dioxide, water vapour and heat are quantified with open-path eddy covariance instrumentation. Ancillary measurements include temperature, air humidity, wind speed and direction, precipitation, incoming and outgoing shortwave radiation, incoming and outgoing long wave radiation, incoming total and diffuse PAR and reflected PAR. Soil water content and temperature are measured at six soil depths. Surface soil heat fluxes are also measured. A COSMOS Cosmic ray soil moisture instrument is installed, along with a logged piezometer, and nested piezometers installed with short screens for groundwater profile sampling. To monitor the watertable gradient, piezometers will be installed 500 m esat and west of the tower. <br/> For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/gingin-banksia-woodland-supersite/. <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330 m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9°C (in Jan) to 15.4°C (in July), while minimum temperatures range from 5.5°C (in July) to 16.0 °C (in Feb).<br /><br />

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in Banksia woodland on the Swan Coastal Plain 70km north of Perth, Western Australia using eddy covariance techniques. <br /> <br /> The Gingin site was established in June 2011 by CSIRO and is now managed by Edith Cowan University Centre for Ecosystem Management. The site is a natural woodland of high species diversity. The overstorey is dominated by Banksia spp. mainly B. menziesii, B. attenuata, and B. grandis with a height of around 7m and leaf area index of about 0.8. There are occasional stands of eucalypts and acacia that reach to 10m and have a denser foliage cover. There are many former wetlands dotted around the woodland, most of which were inundated all winter and some had permanent water 30 years ago. The watertable has now fallen below the base of these systems and they are disconnected and are no longer permanently wet. The fine sediments, sometimes diatomaceous, hold water and they have perched watertables each winter. There is a natural progression of species accompanying this process as they gradually become more dominated by more xeric species. The soils are mainly Podosol sands, with low moisture holding capacity. Field capacity typically about 8 to 10%, and in summer these generally hold less than 2% moisture. The water tabl is at about 8.5 m below the surface, and a WA Dept of water long-term monitoring piezometer is near the base of the tower. The instrument mast is 14m tall, with the eddy covariance instruments mounted at 14.8m. Fluxes of carbon dioxide, water vapour and heat are quantified with open-path eddy covariance instrumentation. Ancillary measurements include temperature, air humidity, wind speed and direction, precipitation, incoming and outgoing shortwave radiation, incoming and outgoing long wave radiation, incoming total and diffuse PAR and reflected PAR. Soil water content and temperature are measured at six soil depths. Surface soil heat fluxes are also measured. A COSMOS Cosmic ray soil moisture instrument is installed, along with a logged piezometer, and nested piezometers installed with short screens for groundwater profile sampling. To monitor the watertable gradient, piezometers will be installed 500 m esat and west of the tower. <br/> For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/gingin-banksia-woodland-supersite/. <br />This data is also available at http://data.ozflux.org.au .<br />

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in a pastoral area using eddy covariance techniques.<br /><br /> The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330 m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9°C (in Jan) to 15.4°C (in July), while minimum temperatures range from 5.5°C (in July) to 16.0 °C (in Feb).<br /><br />This data is also available at http://data.ozflux.org.au .