From 1 - 1 / 1
  • Categories    

    <p>This dataset provides accurate, high-resolution (30 m) / high-frequency (monthly) / continuous (no gaps due to cloud) actual evapotranspiration (AET) for Australia using the CMRSET algorithm. The CMRSET algorithm uses reflective remotely sensed indices to estimate AET from potential evapotranspiration (PET; calculated using daily gridded meteorological data generated by the Bureau of Meteorology). Blending high-resolution / low-frequency AET estimates (e.g., Landsat and Sentinel-2) with low-resolution / high-frequency AET estimates (e.g., MODIS and VIIRS) results in AET data that are high-resolution / high-frequency / continuous (no gaps due to cloud) and accurate. These are all ideal characteristics when calculating the water balance for a wetland, paddock, river reach, irrigation area, landscape or catchment. </p><p> Accurate AET information is important for irrigation, food security and environmental management. Like many other parts of the world, water availability in Australia is limited and AET is the largest consumptive component of the water balance. In Australia 70% of available water is used for crop and pasture irrigation and better monitoring will support improved water use efficiency in this sector, with any water savings available as environmental flows. Additionally, ground-water dependent ecosystems (GDE) occupy a small area yet are "biodiversity hotspots", and knowing their water needs allows for enhanced management of these critical areas in the landscape. Having high-resolution, frequent and accurate AET estimates for all of Australia means this AET data source can be used to model the water balance for any catchment / groundwater system in Australia. </p><p> Details of the CMRSET algorithm and its independent validation are provided in "Guerschman, J.P., McVicar, T.R., Vleeshouwer, J., Chen, Y., Van Niel, T.G. and Peña-Arancibia, J.L. (2021) Estimating actual evapotranspiration continentally at landscape-to-field levels by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 reflective data. Journal of Hydrology (In Preparation)</p>